Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 5:652:123845.
doi: 10.1016/j.ijpharm.2024.123845. Epub 2024 Jan 22.

Development of ionizable lipid nanoparticles and a lyophilized formulation for potent CRISPR-Cas9 delivery and genome editing

Affiliations

Development of ionizable lipid nanoparticles and a lyophilized formulation for potent CRISPR-Cas9 delivery and genome editing

Qian Sun et al. Int J Pharm. .

Abstract

CRISPR-Cas genome editing technology holds great promise for wide-ranging biomedical applications. However, the development of efficient delivery system for CRISPR-Cas components remains challenging. Herein, we synthesized a series of ionizable lipids by conjugation of alkyl-acrylate to different amine molecules and further assembled ionizable lipid nanoparticles (iLNPs) for co-delivery of Cas9 mRNA and sgRNA. Among all the iLNP candidates, 1A14-iLNP with lipids containing spermine as amine head, demonstrated the highest cellular uptake, endosomal escape and mRNA expression in vitro. Co-delivery of Cas9 mRNA and sgRNA targeting EGFP by 1A14-iLNP achieved the highest EGFP knockout efficiency up to 70% in HeLa-EGFP cells. In addition, 1A14-iLNP displayed passive liver-targeting delivery of Cas9 mRNA in vivo with good biocompatibility. Moreover, we developed a simple method of lyophilization-mediated reverse transfection of CRISPR-Cas9 components for efficient genome editing. Therefore, the developed 1A14-iLNP and the lyophilization formulation, represent a potent solution for CRISPR-Cas9 delivery, which might broaden the future of biomedical applications of both mRNA and CRISPR-based therapies.

Keywords: CRISPR-Cas9; Genome editing; Lipid nanoparticle; Lyophilization; mRNA delivery.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources