Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan 25:310:840-844.
doi: 10.3233/SHTI231083.

Instance Selection Algorithms for Predictive Modelling in Telehealth Applications

Affiliations

Instance Selection Algorithms for Predictive Modelling in Telehealth Applications

Fabian Wiesmüller et al. Stud Health Technol Inform. .

Abstract

Telehealth services are becoming more and more popular, leading to an increasing amount of data to be monitored by health professionals. Machine learning can support them in managing these data. Therefore, the right machine learning algorithms need to be applied to the right data. We have implemented and validated different algorithms for selecting optimal time instances from time series data derived from a diabetes telehealth service. Intrinsic, supervised, and unsupervised instance selection algorithms were analysed. Instance selection had a huge impact on the accuracy of our random forest model for dropout prediction. The best results were achieved with a One Class Support Vector Machine, which improved the area under the receiver operating curve of the original algorithm from 69.91 to 75.88 %. We conclude that, although hardly mentioned in telehealth literature so far, instance selection has the potential to significantly improve the accuracy of machine learning algorithms.

Keywords: Instance selection; predictive modelling; telehealth; training data selection.

PubMed Disclaimer

LinkOut - more resources