Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan;53(1):170-9.
doi: 10.1128/aem.53.1.170-179.1987.

Dynamics of extracellular DNA in the marine environment

Dynamics of extracellular DNA in the marine environment

J H Paul et al. Appl Environ Microbiol. 1987 Jan.

Abstract

The production and turnover of dissolved DNA in subtropical estuarine and oligotrophic oceanic environments were investigated. Actively growing heterotrophic bacterioplankton (i.e., those capable of [3H]thymidine incorporation) were found to produce dissolved DNA, presumably through the processes of death and lysis, grazing by bacteriovores, and excretion. Production of dissolved DNA as determined by [3H]thymidine incorporation was less than or equal to 4% of the ambient dissolved DNA concentration per day. In turnover studies, the addition of [3H]DNA (Escherichia coli chromosomal) to seawater resulted in rapid hydrolysis and uptake or radioactivity by microbial populations. DNA was hydrolyzed by both cell-associated and extracellular nucleases, in both estuarine and offshore environments. Kinetic analysis performed for a eutrophic estuary indicated a turnover time for dissolved DNA as short as 6.5 h. Microautoradiographic studies of bacterial populations in Tampa Bay indicated that filamentous and attached bacteria took up most of the radioactivity from [3H]DNA. Dissolved DNA is therefore a dynamic component of the dissolved organic matter in the marine environment, and bacterioplankton play a key role in the cycling of this material.

PubMed Disclaimer

References

    1. Appl Environ Microbiol. 1985 Jun;49(6):1448-54 - PubMed
    1. Appl Environ Microbiol. 1982 Oct;44(4):945-53 - PubMed
    1. Annu Rev Biochem. 1981;50:41-68 - PubMed
    1. Can J Microbiol. 1976 Oct;22(10):1443-52 - PubMed
    1. Appl Environ Microbiol. 1984 Dec;48(6):1076-83 - PubMed

Publication types

LinkOut - more resources