An EEG motor imagery dataset for brain computer interface in acute stroke patients
- PMID: 38272904
- PMCID: PMC10811218
- DOI: 10.1038/s41597-023-02787-8
An EEG motor imagery dataset for brain computer interface in acute stroke patients
Abstract
The brain-computer interface (BCI) is a technology that involves direct communication with parts of the brain and has evolved rapidly in recent years; it has begun to be used in clinical practice, such as for patient rehabilitation. Patient electroencephalography (EEG) datasets are critical for algorithm optimization and clinical applications of BCIs but are rare at present. We collected data from 50 acute stroke patients with wireless portable saline EEG devices during the performance of two tasks: 1) imagining right-handed movements and 2) imagining left-handed movements. The dataset consists of four types of data: 1) the motor imagery instructions, 2) raw recording data, 3) pre-processed data after removing artefacts and other manipulations, and 4) patient characteristics. This is the first open dataset to address left- and right-handed motor imagery in acute stroke patients. We believe that the dataset will be very helpful for analysing brain activation and designing decoding methods that are more applicable for acute stroke patients, which will greatly facilitate research in the field of motor imagery-BCI.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.Sensors (Basel). 2019 Jan 8;19(1):210. doi: 10.3390/s19010210. Sensors (Basel). 2019. PMID: 30626132 Free PMC article.
-
Multi-channel EEG recording during motor imagery of different joints from the same limb.Sci Data. 2020 Jun 19;7(1):191. doi: 10.1038/s41597-020-0535-2. Sci Data. 2020. PMID: 32561769 Free PMC article.
-
Motor Imagery EEG Classification Using Capsule Networks.Sensors (Basel). 2019 Jun 27;19(13):2854. doi: 10.3390/s19132854. Sensors (Basel). 2019. PMID: 31252557 Free PMC article.
-
From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.Prog Brain Res. 2016;228:39-70. doi: 10.1016/bs.pbr.2016.04.017. Epub 2016 May 31. Prog Brain Res. 2016. PMID: 27590965 Review.
-
Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review.J Neuroeng Rehabil. 2021 Jan 23;18(1):15. doi: 10.1186/s12984-021-00820-8. J Neuroeng Rehabil. 2021. PMID: 33485365 Free PMC article.
Cited by
-
A bibliometric analysis of electroencephalogram research in stroke: current trends and future directions.Front Neurol. 2025 Apr 28;16:1539736. doi: 10.3389/fneur.2025.1539736. eCollection 2025. Front Neurol. 2025. PMID: 40356632 Free PMC article.
-
Integrating Electroencephalography Source Localization and Residual Convolutional Neural Network for Advanced Stroke Rehabilitation.Bioengineering (Basel). 2024 Sep 27;11(10):967. doi: 10.3390/bioengineering11100967. Bioengineering (Basel). 2024. PMID: 39451342 Free PMC article.
-
Lower limb motor imagery EEG dataset based on the multi-paradigm and longitudinal-training of stroke patients.Sci Data. 2025 Feb 21;12(1):314. doi: 10.1038/s41597-025-04618-4. Sci Data. 2025. PMID: 39984530 Free PMC article.
-
EEG Signal Prediction for Motor Imagery Classification in Brain-Computer Interfaces.Sensors (Basel). 2025 Apr 3;25(7):2259. doi: 10.3390/s25072259. Sensors (Basel). 2025. PMID: 40218770 Free PMC article.
-
Classification of left and right-hand motor imagery in acute stroke patients using EEG microstate.J Neuroeng Rehabil. 2025 Jun 18;22(1):137. doi: 10.1186/s12984-025-01668-y. J Neuroeng Rehabil. 2025. PMID: 40533772 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical