CircLZIC regulates ox-LDL-induced HUVEC cell proliferation and apoptosis via Micro-330-5p/NOTCH2 axis in atherosclerosis
- PMID: 38277288
- PMCID: PMC11191521
- DOI: 10.3233/CH-232063
CircLZIC regulates ox-LDL-induced HUVEC cell proliferation and apoptosis via Micro-330-5p/NOTCH2 axis in atherosclerosis
Retraction in
-
Retraction notice.Clin Hemorheol Microcirc. 2025 Nov 23:13860291251390410. doi: 10.1177/13860291251390410. Online ahead of print. Clin Hemorheol Microcirc. 2025. PMID: 41275358 No abstract available.
Abstract
Atherosclerosis (AS) is a major chronic non-communicable disease and a primary cause of cardiovascular disease. Recent studies have shown that circRNAs are potential epigenetic factors that regulate vascular endothelial inflammatory responses and AS progression. Therefore, identification of the circRNAs that regulate ox-LDL levels is a critical step to understanding the pathology of AS. Our study is aim to investigate how circLZIC regulates atherosclerosis (AS) via the Micro-330-5p/NOTCH2 regulatory axis. The results showed that CircLZIC and NOTCH2 are highly expressed in human AS clinical samples, while Micro-330-5p is expressed locally. The CCK-8 experiment results showed that circLZIC promotes the proliferation of HUVECS cells. Flow cytometry analysis showed that circLZIC act as an inhibitor of HUVEC cell apoptosis. The expression level of Micro-330-5p can be up-regulated by transfection of small interfering RNA against circLZIC. Further, Starbase predicted that Micro-330-5p could target and regulate NOTCH2. Next, we confirmed that overexpression of Micro-330-5p could significantly reduce the expression of fluorescein using the double Luciferase reporter assay. RIP-qRT-PCR experiment showed that Micro-330-5p and NOTCH2 mRNAs are effectively enriched by ago2 protein. Further, we found that knocking down circLZIC increases the expression of Micro-330-5p and promotes cell apoptosis, while inhibiting the expression of NOTCH2 and cell activity. On the other hand, co-transfection of Micro-330-5p inhibitor decreases Micro-330-5p expression and inhibit cell apoptosis, while increasing NOTCH2 expression and cell activity. In conclusion, CircLZIC regulates HUVEC cell activity by the Micro-330-5p/NOTCH2 signaling pathway, suggesting that circLZIC plays a key role in atherosclerosis development.
Keywords: CircLZIC; Micro-330-5p/NOTCH2; apoptosis; atherosclerosis; proliferation.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
References
-
- Corrado E, Rizzo M, Coppola G, Fattouch K, Novo G, Marturana I, Ferrara F, Novo S. An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb. 17(1):1–11. - PubMed
-
- Zhao Y, Malik S, Criqui MH, Allison MA, Budoff MJ, Sandfort V, Wong ND. Coronary calcium density in relation to coronary heart disease and cardiovascular disease in adults with diabetes or metabolic syndrome: the Multi-ethnic Study of Atherosclerosis (MESA) BMC Cardiovasc Disord. 22(1):536. - PMC - PubMed
-
- Liu F, Gao B, Wang Y CircIRAK1 aggravates ox-LDL-induced endothelial cell injury in atherosclerosis via TRIM14 upregulation by binding to miR-330-5p1. Clin Hemorheol Microcirc. 2022; doi:10.3233/ch-221551. - PubMed
-
- Wang Q, Wang T, Liang S, Zhou L. Ox-LDL-Induced Vascular Smooth Muscle Cell Dysfunction Partly Depends on the Circ_0044073/miR-377-3p/AURKA Axis in Atherosclerosis. Int Heart J. 64(2):252–262. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
