Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus
- PMID: 3827812
- PMCID: PMC1147317
- DOI: 10.1042/bj2390517
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus
Abstract
Glucose dehydrogenase has been purified to homogeneity from cell extracts of the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme utilizes both NAD+ and NADP+ as coenzyme and catalyses the oxidation of several monosaccharides to the corresponding glyconic acid. Substrate specificity and oxidation rate depend on the coenzyme present; when NAD+ is used, the enzyme binds and oxidizes specifically sugars presenting equatorial orientation of hydroxy groups at C-2, C-3 and C-4. The Mr of the native enzyme is 124,000 and decreases to about 60,000 in the presence of 6 M-guanidinium chloride and to about 30,000 in the presence of 5% (w/v) SDS. The enzyme shows maximal activity at pH 9, 77 degrees C and 20 mM-Mg2+, -Mn2+ or -Ca2+ and is fairly stable in the presence of chaotropic agents and water-miscible organic solvents such as methanol or acetone.
Similar articles
-
Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum.Biochem J. 1989 Aug 1;261(3):973-7. doi: 10.1042/bj2610973. Biochem J. 1989. PMID: 2803257 Free PMC article.
-
Analysis of bacterial glucose dehydrogenase homologs from thermoacidophilic archaeon Thermoplasma acidophilum: finding and characterization of aldohexose dehydrogenase.Biosci Biotechnol Biochem. 2004 Dec;68(12):2451-6. doi: 10.1271/bbb.68.2451. Biosci Biotechnol Biochem. 2004. PMID: 15618614
-
Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium.Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1271-80. doi: 10.1107/S1399004714002363. Epub 2014 Apr 29. Acta Crystallogr D Biol Crystallogr. 2014. PMID: 24816096
-
Physiological significance and bioenergetic aspects of glucose dehydrogenase.Antonie Van Leeuwenhoek. 1989 May;56(1):51-61. doi: 10.1007/BF00822584. Antonie Van Leeuwenhoek. 1989. PMID: 2549864 Review.
-
Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest.J R Soc Interface. 2007 Apr 22;4(13):183-91. doi: 10.1098/rsif.2006.0174. J R Soc Interface. 2007. PMID: 17251151 Free PMC article. Review.
Cited by
-
Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum.Biochem J. 1989 Aug 1;261(3):973-7. doi: 10.1042/bj2610973. Biochem J. 1989. PMID: 2803257 Free PMC article.
-
The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway.Extremophiles. 2008 Jan;12(1):75-88. doi: 10.1007/s00792-007-0082-1. Epub 2007 Jun 5. Extremophiles. 2008. PMID: 17549431
-
Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.J Bacteriol. 2016 Jul 28;198(16):2251-62. doi: 10.1128/JB.00286-16. Print 2016 Aug 15. J Bacteriol. 2016. PMID: 27297879 Free PMC article.
-
Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration.AMB Express. 2015 Dec;5(1):68. doi: 10.1186/s13568-015-0157-9. Epub 2015 Nov 4. AMB Express. 2015. PMID: 26538191 Free PMC article.
-
Purification and characterization of a heat-stable esterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.Biochem J. 1988 Mar 1;250(2):453-8. doi: 10.1042/bj2500453. Biochem J. 1988. PMID: 3128284 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous