Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2024 Aug;64(2):228-235.
doi: 10.1002/uog.27598. Epub 2024 Jul 7.

Midline structures and cortical development in late-onset fetal growth restriction according to Doppler status: prospective study

Affiliations
Free article
Observational Study

Midline structures and cortical development in late-onset fetal growth restriction according to Doppler status: prospective study

I Mappa et al. Ultrasound Obstet Gynecol. 2024 Aug.
Free article

Abstract

Objectives: Fetuses with late-onset growth restriction (FGR) have a higher risk of suboptimal neurocognitive performance after birth. Previous studies have reported that impaired brain and cortical development can start in utero. The primary aim of this study was to report midline structure growth and cortical development in fetuses with late-onset FGR according to its severity; the secondary aim was to elucidate whether the severity of FGR, as defined by the presence of abnormal Doppler findings, plays a role in affecting brain growth and maturation.

Methods: This was a prospective observational study that included fetuses with late-onset FGR (defined according to the Delphi FGR criteria) undergoing neurosonography between 32 and 34 weeks' gestation. Midline structure (corpus callosum (CC) and cerebellar vermis (CV)) length and cortical development, including the depth of the Sylvian (SF), parieto-occipital (POF) and calcarine (CF) fissures, were compared between late-onset FGR, small-for-gestational-age (SGA) and appropriate-for-gestational-age (AGA) fetuses. Subgroup analysis according to the severity of FGR (normal vs abnormal fetal Doppler) was also performed. Univariate analysis was used to analyze the data.

Results: A total of 52 late-onset FGR fetuses with normal Doppler findings, 60 late-onset FGR fetuses with abnormal Doppler findings, 64 SGA fetuses and 100 AGA fetuses were included in the analysis. When comparing AGA controls with SGA fetuses, late-onset FGR fetuses with normal Doppler findings and late-onset FGR fetuses with abnormal Doppler findings, there was a progressive and significant reduction in the absolute values of the following parameters: CC length (median (interquartile range (IQR)), 43.5 (28.9-56.1) mm vs 41.9 (27.8-51.8) mm vs 38.5 (29.1-50.5) mm vs 31.7 (23.8-40.2) mm; K = 26.68; P < 0.0001), SF depth (median (IQR), 14.5 (10.7-16.8) mm vs 12.7 (9.8-15.1) mm vs 11.9 (9.1-13.4) mm vs 8.3 (6.7-10.3) mm; K = 75.82; P < 0.0001), POF depth (median (IQR), 8.6 (6.3-11.1) mm vs 8.1 (5.6-10.4) mm vs 7.8 (6.1-9.3) mm vs 6.6 (4.2-8.0) mm; K = 45.06; P < 0.0001) and CF depth (median (IQR), 9.3 (6.7-11.5) mm vs 8.2 (5.7-10.7) mm vs 7.7 (5.2-9.4) mm vs 6.3 (4.5-7.2) mm; K = 46.14; P < 0.0001). Absolute CV length was significantly higher in AGA fetuses compared with all other groups, although the same progressive pattern was not noted (median (IQR), 24.9 (17.6-29.2) mm vs 21.6 (15.2-26.1) mm vs 19.1 (13.8-25.9) mm vs 21.0 (13.5-25.8) mm; K = 16.72; P = 0.0008). When the neurosonographic variables were corrected for fetal head circumference, a significant difference in the CC length and SF, POF and CF depths, but not CV length, was observed only in late-onset FGR fetuses with abnormal Doppler findings when compared with AGA and SGA fetuses.

Conclusions: Fetuses with late-onset FGR had shorter CC length and delayed cortical development when compared with AGA fetuses. After controlling for fetal head circumference, these differences remained significant only in late-onset FGR fetuses with abnormal Doppler. These findings support the existence of a link between brain development and impaired placental function. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.

Keywords: cerebellar vermis; corpus callosum; cortical folding; fetal growth restriction; neurosonography; small‐for‐gestational age.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Arcangeli T, Thilaganathan B, Hooper R, Khan KS, Bhide A. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol. 2012;40:267‐275.
    1. Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S, Simonelli A. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta‐analysis. JAMA Pediatr. 2020;174:772‐781.
    1. Crispi F, Miranda J, Gratacós E. Long‐term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J Obstet Gynecol. 2018;218:S869‐S879.
    1. Korzeniewski SJ, Allred EN, Joseph RM, et al. Neurodevelopment at age 10 years of children born < 28 weeks with fetal growth restriction. Pediatrics. 2017;140:e20170697.
    1. Della Gatta AN, Aceti A, Spinedi SF, et al. Neurodevelopmental outcomes of very preterm infants born following early foetal growth restriction with absent end‐diastolic umbilical flow. Eur J Pediatr. 2023;182:4467‐4476.

Publication types

MeSH terms

LinkOut - more resources