NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport
- PMID: 38282024
- PMCID: PMC10823734
- DOI: 10.1186/s13024-023-00690-9
NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport
Abstract
Background: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function.
Methods: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos.
Results: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons.
Conclusion: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
© 2024. The Author(s).
Conflict of interest statement
All authors declare they have no competing interests.
Figures








Update of
-
NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport.Res Sq [Preprint]. 2023 May 19:rs.3.rs-2859584. doi: 10.21203/rs.3.rs-2859584/v1. Res Sq. 2023. Update in: Mol Neurodegener. 2024 Jan 29;19(1):13. doi: 10.1186/s13024-023-00690-9. PMID: 37292715 Free PMC article. Updated. Preprint.
Similar articles
-
NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport.Res Sq [Preprint]. 2023 May 19:rs.3.rs-2859584. doi: 10.21203/rs.3.rs-2859584/v1. Res Sq. 2023. Update in: Mol Neurodegener. 2024 Jan 29;19(1):13. doi: 10.1186/s13024-023-00690-9. PMID: 37292715 Free PMC article. Updated. Preprint.
-
Chronically Low NMNAT2 Expression Causes Sub-lethal SARM1 Activation and Altered Response to Nicotinamide Riboside in Axons.Mol Neurobiol. 2025 Mar;62(3):3903-3917. doi: 10.1007/s12035-024-04480-2. Epub 2024 Oct 1. Mol Neurobiol. 2025. PMID: 39352636 Free PMC article.
-
The chemical biology of NAD+ regulation in axon degeneration.Curr Opin Chem Biol. 2022 Aug;69:102176. doi: 10.1016/j.cbpa.2022.102176. Epub 2022 Jul 1. Curr Opin Chem Biol. 2022. PMID: 35780654 Free PMC article. Review.
-
Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration.Neurobiol Dis. 2020 Feb;134:104678. doi: 10.1016/j.nbd.2019.104678. Epub 2019 Nov 15. Neurobiol Dis. 2020. PMID: 31740269 Free PMC article.
-
SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities.Neuroscientist. 2024 Aug;30(4):473-492. doi: 10.1177/10738584231162508. Epub 2023 Mar 31. Neuroscientist. 2024. PMID: 37002660 Free PMC article. Review.
Cited by
-
Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells.Biomolecules. 2024 Dec 6;14(12):1556. doi: 10.3390/biom14121556. Biomolecules. 2024. PMID: 39766263 Free PMC article. Review.
-
Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide.Nutrients. 2024 Jul 20;16(14):2354. doi: 10.3390/nu16142354. Nutrients. 2024. PMID: 39064797 Free PMC article. Review.
-
Identification of Blood Biomarkers Related to Energy Metabolism and Construction of Diagnostic Prediction Model Based on Three Independent Alzheimer's Disease Cohorts.J Alzheimers Dis. 2024;100(4):1261-1287. doi: 10.3233/JAD-240301. J Alzheimers Dis. 2024. PMID: 39093073 Free PMC article.
-
Potential Therapeutic Interventions Targeting NAD+ Metabolism for ALS.Cells. 2024 Sep 9;13(17):1509. doi: 10.3390/cells13171509. Cells. 2024. PMID: 39273079 Free PMC article. Review.
-
Targeting SARM1 as a novel neuroprotective therapy in neurotropic viral infections.J Neuroinflammation. 2025 Apr 20;22(1):113. doi: 10.1186/s12974-025-03423-5. J Neuroinflammation. 2025. PMID: 40254576 Free PMC article.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials