Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024;220(1):9.
doi: 10.1007/s11214-023-01035-0. Epub 2024 Jan 24.

The Comet Interceptor Mission

Geraint H Jones  1   2 Colin Snodgrass  3 Cecilia Tubiana  4 Michael Küppers  5 Hideyo Kawakita  6 Luisa M Lara  7 Jessica Agarwal  8 Nicolas André  9 Nicholas Attree  7 Uli Auster  8 Stefano Bagnulo  10 Michele Bannister  11 Arnaud Beth  12 Neil Bowles  13 Andrew Coates  1   2 Luigi Colangeli  14 Carlos Corral van Damme  14 Vania Da Deppo  15 Johan De Keyser  16 Vincenzo Della Corte  4 Niklas Edberg  17 Mohamed Ramy El-Maarry  18 Sara Faggi  19 Marco Fulle  20 Ryu Funase  21 Marina Galand  12 Charlotte Goetz  14 Olivier Groussin  22 Aurélie Guilbert-Lepoutre  23 Pierre Henri  24 Satoshi Kasahara  25 Akos Kereszturi  26 Mark Kidger  5 Matthew Knight  27 Rosita Kokotanekova  28 Ivana Kolmasova  29 Konrad Kossacki  30 Ekkehard Kührt  31 Yuna Kwon  32 Fiorangela La Forgia  33 Anny-Chantal Levasseur-Regourd  34 Manuela Lippi  8 Andrea Longobardo  4 Raphael Marschall  35 Marek Morawski  36 Olga Muñoz  7 Antti Näsilä  37 Hans Nilsson  17 Cyrielle Opitom  3 Mihkel Pajusalu  38 Antoine Pommerol  39 Lubomir Prech  40 Nicola Rando  14 Francesco Ratti  14 Hanna Rothkaehl  36 Alessandra Rotundi  41 Martin Rubin  39 Naoya Sakatani  21 Joan Pau Sánchez  42 Cyril Simon Wedlund  43 Anamarija Stankov  14 Nicolas Thomas  39 Imre Toth  26 Geronimo Villanueva  19 Jean-Baptiste Vincent  44 Martin Volwerk  43 Peter Wurz  39 Arno Wielders  14 Kazuo Yoshioka  25 Konrad Aleksiejuk  36 Fernando Alvarez  7 Carine Amoros  9 Shahid Aslam  19 Barbara Atamaniuk  36 Jędrzej Baran  36 Tomasz Barciński  36 Thomas Beck  39 Thomas Behnke  44 Martin Berglund  17 Ivano Bertini  41 Marcin Bieda  45 Piotr Binczyk  45 Martin-Diego Busch  39 Andrei Cacovean  44 Maria Teresa Capria  4 Chris Carr  12 José María Castro Marín  7 Matteo Ceriotti  46 Paolo Chioetto  15 Agata Chuchra-Konrad  36 Lorenzo Cocola  15 Fabrice Colin  47 Chiaki Crews  48 Victoria Cripps  17 Emanuele Cupido  12 Alberto Dassatti  49 Björn J R Davidsson  50 Thierry De Roche  39 Jan Deca  51 Simone Del Togno  44 Frederik Dhooghe  16 Kerri Donaldson Hanna  52 Anders Eriksson  17 Andrey Fedorov  9 Estela Fernández-Valenzuela  53 Stefano Ferretti  41 Johan Floriot  22 Fabio Frassetto  15 Jesper Fredriksson  17 Philippe Garnier  9 Dorota Gaweł  45 Vincent Génot  9 Thomas Gerber  39 Karl-Heinz Glassmeier  8 Mikael Granvik  54   55 Benjamin Grison  29 Herbert Gunell  56 Tedjani Hachemi  47 Christian Hagen  43 Rajkumar Hajra  57 Yuki Harada  58 Johann Hasiba  43 Nico Haslebacher  39 Miguel Luis Herranz De La Revilla  7 Daniel Hestroffer  59 Tilak Hewagama  19 Carrie Holt  60 Stubbe Hviid  44 Iaroslav Iakubivskyi  38 Laura Inno  41 Patrick Irwin  13 Stavro Ivanovski  20 Jiri Jansky  29 Irmgard Jernej  43 Harald Jeszenszky  43 Jaime Jimenéz  7 Laurent Jorda  22 Mihkel Kama  61   38 Shingo Kameda  62 Michael S P Kelley  63 Kamil Klepacki  45 Tomáš Kohout  64   65 Hirotsugu Kojima  66 Tomasz Kowalski  36 Masaki Kuwabara  62 Michal Ladno  45 Gunter Laky  43 Helmut Lammer  43 Radek Lan  29 Benoit Lavraud  67 Monica Lazzarin  33 Olivier Le Duff  47 Qiu-Mei Lee  9 Cezary Lesniak  45 Zoe Lewis  12 Zhong-Yi Lin  68 Tim Lister  60 Stephen Lowry  69 Werner Magnes  43 Johannes Markkanen  8 Ignacio Martinez Navajas  7 Zita Martins  70 Ayako Matsuoka  58 Barbara Matyjasiak  36 Christian Mazelle  9 Elena Mazzotta Epifani  71 Mirko Meier  39 Harald Michaelis  44 Marco Micheli  72 Alessandra Migliorini  4 Aude-Lyse Millet  47 Fernando Moreno  7 Stefano Mottola  44 Bruno Moutounaick  9 Karri Muinonen  54 Daniel R Müller  39 Go Murakami  21 Naofumi Murata  21 Kamil Myszka  45 Shintaro Nakajima  21 Zoltan Nemeth  73 Artiom Nikolajev  38 Simone Nordera  15 Dan Ohlsson  17 Aire Olesk  38 Harald Ottacher  43 Naoya Ozaki  21 Christophe Oziol  9 Manish Patel  48 Aditya Savio Paul  38 Antti Penttilä  54 Claudio Pernechele  74 Joakim Peterson  17 Enrico Petraglio  49 Alice Maria Piccirillo  41 Ferdinand Plaschke  8 Szymon Polak  36 Frank Postberg  75 Herman Proosa  38 Silvia Protopapa  76 Walter Puccio  17 Sylvain Ranvier  16 Sean Raymond  67 Ingo Richter  8 Martin Rieder  39 Roberto Rigamonti  49 Irene Ruiz Rodriguez  12 Ondrej Santolik  29 Takahiro Sasaki  21 Rolf Schrödter  44 Katherine Shirley  13 Andris Slavinskis  38 Balint Sodor  77 Jan Soucek  29 Peter Stephenson  12 Linus Stöckli  39 Paweł Szewczyk  36 Gabor Troznai  77 Ludek Uhlir  29 Naoto Usami  21 Aris Valavanoglou  43 Jakub Vaverka  40 Wei Wang  39 Xiao-Dong Wang  17 Gaëtan Wattieaux  78 Martin Wieser  17 Sebastian Wolf  39 Hajime Yano  21 Ichiro Yoshikawa  25 Vladimir Zakharov  79 Tomasz Zawistowski  45 Paola Zuppella  15 Giovanna Rinaldi  4 Hantao Ji  80
Affiliations
Review

The Comet Interceptor Mission

Geraint H Jones et al. Space Sci Rev. 2024.

Abstract

Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.

Keywords: Comets; Instruments – spaceborne and space research; Spacecraft.

PubMed Disclaimer

Conflict of interest statement

Competing InterestsThe authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Sketch of the Comet Interceptor flyby, not to scale. Spacecraft A will pass furthest from the nucleus, with probes B1 and B2 passing closer. Both probes will relay their data in real time to be stored on spacecraft A for later transmission
Fig. 2
Fig. 2
Classifications of comets by Levison (1996). T refers to the Tisserand parameter, whilst parameter a refers to orbital semi-major axis
Fig. 3
Fig. 3
Histograms showing the range of observed comet properties (JFCs in blue and Halley-type/LPCs in grey hashing). The figure provides an overview of the range of measured values and the sample size of each parameter. In case a comet has multiple measurements of the same property, the most recently reported sufficiently precise measurement is displayed. The effective radius histogram is limited to thermal-IR measurements from Fernández et al. (2013) and Bauer et al. (2017). The axis ratios plotted are lower limits for all comets except for those visited by spacecraft. Adapted from Knight et al. (2023)
Fig. 4
Fig. 4
A subset of the cometary nuclei that have been visited by spacecraft and on the right an image of Arrokoth, a Kuiper Belt Object, which is a member of the Cold Classical population which is not believed to be a significant source of JFCs. Objects are not shown to scale
Fig. 5
Fig. 5
Pits on the surface of comet 67P/Churyumov-Gerasimenko (left). Hathor cliff above the ‘neck’ region between the two lobes of 67P (right). ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM
Fig. 6
Fig. 6
A water ice-filled depression on the surface of 67P’s nucleus. This image is a false-color composite, where the pale blue patches highlight the presence and location of water-ice. ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Fig. 7
Fig. 7
Surface morphology changes due to fall-back of dust on the surface of 67P/Churyumov-Gerasimenko. ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM
Fig. 8
Fig. 8
Typical comet spectrum from ground-based visible observations, with key emission features marked. Major components such as water or CO2 are not observable and require space missions to be characterised. (Image courtesy of C. Opitom)
Fig. 9
Fig. 9
Images showing different morphology of gas jets of different species from Rosetta/OSIRIS (from Bodewits et al. 2016)
Fig. 10
Fig. 10
Morphology of different types of dust particles, from summary by Güttler et al. (2019)
Fig. 11
Fig. 11
Outburst on the surface of 67P/Churyumov-Gerasimenko observed on 3 July 2016 (left) and on 29 July 2015 (right). ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM
Fig. 12
Fig. 12
Image from NASA’s EPOXI mission shows part of the nucleus of Comet 103P/Hartley 2. The sun is illuminating the nucleus from the right. A distinct cloud of individual particles is visible, gas release from which is responsible for the high apparent activity level given this nucleus’s size. Image Credit: NASA/JPL-Caltech/UMD
Fig. 13
Fig. 13
Multi-point measurements will determine the scale and shape of several structures in the comet-solar wind interaction. The time at which each of the three spacecraft/probes cross (or do not cross) the bow shock (green) and diamagnetic cavity (blue) will determine their shapes and scales. The magnetic field (red) will also be probed using magnetometers on all the three platforms
Fig. 14
Fig. 14
The highly-structured ion tail of Comet C/2016 R2 (Pan-STARRS). This particular comet was an atypical dust-poor LPC (e.g. Biver et al. 2018) which reached perihelion at 2.6 au from the Sun. Image: ESO, under license Attribution 4.0 Interactional (CC BY 4.0)
Fig. 15
Fig. 15
The remote sensing instruments aboard all three platforms will return complementary views of the nucleus from different directions. Inset images show representative complementary views of the single nucleus from two of the three spacecraft platforms
Fig. 16
Fig. 16
CAD/CAM of the CoCa instrument. Left: The Camera Support Unit (CSU). Light coming from the Rotating Mirror Assembly (RMA, Fig. 18) enters the instrument through the baffle (purple cylinder) and is reflected by the four mirrors of the telescope (yellow) onto the filter wheel assembly (Fig. 17) Right: The Electronics Unit (ELU). Centre: The Proximity Electronics Unit (PEU)
Fig. 17
Fig. 17
The CoCa filter wheel assembly with four filters. The detector is shown in pink below one of the filters. The filter wheel includes a launch lock to prevent motion during launch
Fig. 18
Fig. 18
CAD/CAM drawing of the RMA showing the opening (top) and the fold mirror mount (turquoise colour) which rotates and reflects light toward CoCa (left). The mounting feet (yellow colour) attach the RMA to the exterior of the spacecraft while the entire CoCa instrument (Fig. 16) is inside with their optical axes aligned
Fig. 19
Fig. 19
MIRMIS TIRI/MIR/NIR mounted on a common optical bench (548.5 × 282.0 × 126.8, in mm)
Fig. 20
Fig. 20
MANiaC consisting of a time-of-flight mass spectrometer (SHU, Sensor Head Unit), the Neutral Density Gauge (NDG), and the ELectronic Unit (ELU). For reference the long axis of the SHU corresponds to ∼470 mm. Only the antechamber spheres of both the NDG and the SHU (marked yellow) are exposed to the gas and dust flow of the coma and are covered by dedicated dust shields. The rest is enclosed and protected inside the spacecraft
Fig. 21
Fig. 21
DISC Unit. Left: assembled DISC breadboard. Right: Sensing plate with glued PZTs at 3 corners
Fig. 22
Fig. 22
Integration of the FGM-A sensor within the COMPLIMENT merged probe
Fig. 23
Fig. 23
The SCIENA fully operational Technology Model, excluding some thermal hardware
Fig. 24
Fig. 24
LEES instrument CAD model
Fig. 25
Fig. 25
Design overview of HI
Fig. 26
Fig. 26
(a) PS structure including electronics boxes and (b) a magnetometer breadboard model
Fig. 27
Fig. 27
Components of the NAC/WAC system
Fig. 28
Fig. 28
EnVisS instrument present mechanical layout (Courtesy of Leonardo SpA-IT)
Fig. 29
Fig. 29
OPIC engineering model with internals exposed
Fig. 30
Fig. 30
Picture of its sensing elements (left) and CAD rendering (right) of one FGM-B2 sensor
Fig. 31
Fig. 31
Empirical CDFs of LPCs with perihelion <2 au
Fig. 32
Fig. 32
Sample transfer to SEL2 quasi-Halo orbit and waiting phase in the Sun-Earth rotating frame
Fig. 33
Fig. 33
Reachable Rc-θ regions with 750 m/s for sample transfer times of 1 year (top) and 3 years (bottom)
Fig. 34
Fig. 34
Example geometry of sample transfers to comet 26P, which was an original backup target for the mission. a) Projection on Sun-Earth rotating frame. Solid blue line: minimum ΔV; dashed orange line: minimum time of flight. b) Zoom of SEL2 departure. c) Distances to Earth and Sun; dots every 15 days; 6 months post-encounter phase
Fig. 35
Fig. 35
Influence of ΔV and mission duration on the probability of at least one LPC target. Time between launch and target detection <2 years, mission duration includes 6 months post-encounter phase
Fig. 36
Fig. 36
Statistics of time parameters relevant for the mission. a) Shortest wait at SEL2; b) Longest wait at SEL2; c) Transfer time from SEL2 to comet encounter; d) Duration from launch to comet encounter
Fig. 37
Fig. 37
Relative encounter speed (left) and flyby solar aspect angle (right) for reachable LPCs (0.7 au < Rc < 1.3 au)
Fig. 38
Fig. 38
Allowed regions of relative velocities and flyby solar aspect angles
Fig. 39
Fig. 39
Timeline of operations for the comet flyby
Fig. 40
Fig. 40
Summary of backup target selected as a function of the launch date. As the launch date at the time of writing is in Q4 of 2029, 26P is no longer reachable
Fig. 41
Fig. 41
Comet Interceptor spacecraft A and probe B2 design concepts (OHB)
Fig. 42
Fig. 42
Comet Interceptor probe B1 after separation from spacecraft A (JAXA)

References

    1. Adams FC. The birth environment of the solar system. Annu Rev Astron Astrophys. 2010;48:47–85. doi: 10.1146/annurev-astro-081309-130830. - DOI
    1. A’Hearn MF, Millis RC, Schleicher DO, Osip DJ, Birch PV. The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976-1992. Icarus. 1995;118(2):223–270. doi: 10.1006/icar.1995.1190. - DOI
    1. A’Hearn MF, Belton MJS, Delamere WA, Kissel J, Klaasen KP, McFadden LA, Meech KJ, Melosh HJ, Schultz PH, Sunshine JM, Thomas PC, Veverka J, Yeomans DK, Baca MW, Busko I, Crockett CJ, Collins SM, Desnoyer M, Eberhardy CA, Ernst CM, Farnham TL, Feaga L, Groussin O, Hampton D, Ipatov SI, Li JY, Lindler D, Lisse CM, Mastrodemos N, Owen WM, Richardson JE, Wellnitz DD, White RL. Deep impact: excavating comet Tempel 1. Science. 2005;310(5746):258–264. doi: 10.1126/science.1118923. - DOI - PubMed
    1. A’Hearn MF, Belton MJS, Delamere WA, Feaga LM, Hampton D, Kissel J, Klaasen KP, McFadden LA, Meech KJ, Melosh HJ, Schultz PH, Sunshine JM, Thomas PC, Veverka J, Wellnitz DD, Yeomans DK, Besse S, Bodewits D, Bowling TJ, Carcich BT, Collins SM, Farnham TL, Groussin O, Hermalyn B, Kelley MS, Kelley MS, Li JY, Lindler DJ, Lisse CM, McLaughlin SA, Merlin F, Protopapa S, Richardson JE, Williams JL. EPOXI at comet Hartley 2. Science. 2011;332(6036):1396. doi: 10.1126/science.1204054. - DOI - PubMed
    1. Alfven H. On the theory of comet tails. Tellus. 1957;9:92. doi: 10.3402/tellusa.v9i1.9064. - DOI