Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr 9;898(2):159-71.
doi: 10.1016/0005-2736(87)90034-4.

The kinetics of sulfobromophthalein uptake by rat liver sinusoidal vesicles

The kinetics of sulfobromophthalein uptake by rat liver sinusoidal vesicles

B J Potter et al. Biochim Biophys Acta. .

Abstract

The kinetics of bromo[35S]sulfophthalein (35S-BSP) binding by and uptake across the hepatocyte sinusoidal membrane were investigated using isolated rat liver sinusoidal membrane vesicles containing K+ as the principal internal inorganic cation. Uptake of 35S-BSP into vesicles was found to be temperature dependent, with maximum uptake between 35 and 40 degrees C; only binding occurred at or below 15 degrees C. Uptake at 37 degrees C was saturable and resolvable by Eadee-Hofstee analysis into two components: one with high affinity (Km = 53.1 microM) but low capacity, and the second of low affinity (Km = 1150 microM) but high capacity. By pre- or post-incubation, respectively, with unlabelled BSP, trans-stimulation and counter transport of 35S-BSP could also be demonstrated in these vesicles. Uptake was inhibited competitively using 5 microM Rose bengal and 10 microM indocyanine green, and non-competitively using 10 microM DIDS. Taurocholate did not inhibit uptake, and actually enhanced transport at concentrations greater than or equal to 250 microM. Imposition of inwardly directed inorganic ion gradients resulted in the enhancement of 35S-BSP transport when chloride ions were part of this gradient, irrespective of the cation employed whereas there was no apparent cation effect. However, substitution of 10 mM Na+ for 10 mM K+ as the internal cation resulted in a significant increase in uptake in the presence of external K+ as compared to Na+ gradients. This effect was not observed when 10 mM Tris+ was employed as the internal cation. The kinetics of 35S-BSP uptake by isolated sinusoidal membrane vesicles are indicative of facilitated transport. While the observed inorganic ion effects suggest a possible electrogenic component, the driving forces for hepatic BSP uptake remain uncertain. Isolated sinusoidal membrane vesicles provide a useful technique for studying hepatic uptake processes independent of circulatory or subsequent cellular phenomena.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources