Water-soluble chromenylium dyes for shortwave infrared imaging in mice
- PMID: 38283614
- PMCID: PMC10817055
- DOI: 10.1016/j.chempr.2023.08.021
Water-soluble chromenylium dyes for shortwave infrared imaging in mice
Abstract
In vivo imaging using shortwave infrared light (SWIR, 1000-2000 nm) benefits from deeper penetration and higher resolution compared to using visible and near-infrared wavelengths. However, the development of biocompatible SWIR contrast agents remains challenging. Despite recent advancements, small molecule SWIR fluorophores are often hindered by their significant hydrophobicity. We report a platform for generating a panel of soluble and functional dyes for SWIR imaging by late-stage functionalization of a versatile fluorophore intermediate, affording water-soluble dyes with bright SWIR fluorescence in serum. Specifically, a tetra-sulfonate derivative enables clear video-rate imaging of vasculature with only 0.05 nmol dye, and a tetra-ammonium dye shows strong cellular retention for tracking of tumor growth. Additionally, incorporation of phosphonate functionality enables imaging of bone in awake mice. This modular design provides insights for facile derivatization of existing SWIR fluorophores to introduce both solubility and bioactivity towards in vivo bioimaging.
Conflict of interest statement
Declaration of interests Work in this report is included in a pending patent application. P.S.L. is employed by Purdue University, which owns the patents for OTL-38.
Figures






Similar articles
-
Chromenylium Star Polymers: Merging Water Solubility and Stealth Properties with Shortwave Infrared Emissive Fluorophores.ACS Cent Sci. 2024 Dec 21;11(2):208-218. doi: 10.1021/acscentsci.4c01570. eCollection 2025 Feb 26. ACS Cent Sci. 2024. PMID: 40028351 Free PMC article.
-
Biocompatible and Water-Soluble Shortwave-Infrared (SWIR)-Emitting Cyanine-Based Fluorescent Probes for In Vivo Multiplexed Molecular Imaging.ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17253-17266. doi: 10.1021/acsami.4c01000. Epub 2024 Apr 1. ACS Appl Mater Interfaces. 2024. PMID: 38557012
-
Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4465-4470. doi: 10.1073/pnas.1718917115. Epub 2018 Apr 6. Proc Natl Acad Sci U S A. 2018. PMID: 29626132 Free PMC article.
-
Extending optical chemical tools and technologies to mice by shifting to the shortwave infrared region.Curr Opin Chem Biol. 2022 Jun;68:102131. doi: 10.1016/j.cbpa.2022.102131. Epub 2022 Mar 30. Curr Opin Chem Biol. 2022. PMID: 35366502 Free PMC article. Review.
-
In vivo near-infrared fluorescent optical imaging for CNS drug discovery.Expert Opin Drug Discov. 2020 Aug;15(8):903-915. doi: 10.1080/17460441.2020.1759549. Epub 2020 May 12. Expert Opin Drug Discov. 2020. PMID: 32396023 Review.
Cited by
-
Two-plex in vivo molecular imaging in the second near-infrared window for immunotherapeutic response.Theranostics. 2025 Mar 19;15(10):4481-4494. doi: 10.7150/thno.108880. eCollection 2025. Theranostics. 2025. PMID: 40225584 Free PMC article.
-
High-Resolution Multicolor Shortwave Infrared Dynamic In Vivo Imaging with Chromenylium Nonamethine Dyes.J Am Chem Soc. 2025 May 21;147(20):17384-17393. doi: 10.1021/jacs.5c03673. Epub 2025 May 9. J Am Chem Soc. 2025. PMID: 40343727 Free PMC article.
-
A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging.Sensors (Basel). 2024 May 30;24(11):3539. doi: 10.3390/s24113539. Sensors (Basel). 2024. PMID: 38894330 Free PMC article. Review.
-
Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance.JACS Au. 2024 Aug 8;4(8):3007-3017. doi: 10.1021/jacsau.4c00343. eCollection 2024 Aug 26. JACS Au. 2024. PMID: 39211623 Free PMC article.
-
Near-infrared II cyanine fluorophores with large stokes shift engineered by regulating respective absorption and emission.Nat Commun. 2025 May 27;16(1):4911. doi: 10.1038/s41467-025-60241-2. Nat Commun. 2025. PMID: 40425593 Free PMC article.
References
-
- Hong G, Antaris AL, and Dai H (2017). Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 1–22. 10.1038/s41551-016-0010. - DOI
-
- Thimsen E, Sadtler B, and Berezin MY (2017). Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities. Nanophotonics 6, 1043–1054. 10.1515/nanoph-2017-0039. - DOI
-
- Diao S, Hong G, Antaris AL, Blackburn JL, Cheng K, Cheng Z, and Dai H (2015). Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034. 10.1007/s12274-015-0808-9. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources