Cognitive reserve, depressive symptoms, obesity, and change in employment status predict mental processing speed and executive function after COVID-19
- PMID: 38285245
- PMCID: PMC12148995
- DOI: 10.1007/s00406-023-01748-x
Cognitive reserve, depressive symptoms, obesity, and change in employment status predict mental processing speed and executive function after COVID-19
Abstract
The risk factors for post-COVID-19 cognitive impairment have been poorly described. This study aimed to identify the sociodemographic, clinical, and lifestyle characteristics that characterize a group of post-COVID-19 condition (PCC) participants with neuropsychological impairment. The study sample included 426 participants with PCC who underwent a neurobehavioral evaluation. We selected seven mental speed processing and executive function variables to obtain a data-driven partition. Clustering algorithms were applied, including K-means, bisecting K-means, and Gaussian mixture models. Different machine learning algorithms were then used to obtain a classifier able to separate the two clusters according to the demographic, clinical, emotional, and lifestyle variables, including logistic regression with least absolute shrinkage and selection operator (LASSO) (L1) and Ridge (L2) regularization, support vector machines (linear/quadratic/radial basis function kernels), and decision tree ensembles (random forest/gradient boosting trees). All clustering quality measures were in agreement in detecting only two clusters in the data based solely on cognitive performance. A model with four variables (cognitive reserve, depressive symptoms, obesity, and change in work situation) obtained with logistic regression with LASSO regularization was able to classify between good and poor cognitive performers with an accuracy and a weighted averaged precision of 72%, a recall of 73%, and an area under the curve of 0.72. PCC individuals with a lower cognitive reserve, more depressive symptoms, obesity, and a change in employment status were at greater risk for poor performance on tasks requiring mental processing speed and executive function. Study registration: www.ClinicalTrials.gov , identifier NCT05307575.
Keywords: Clustering; Executive function; Logistic regression; Machine learning; Mental speed processing; Post-COVID-19 condition.
© 2024. The Author(s).
Conflict of interest statement
Declarations. Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures










References
-
- ECDC (2022) Prevalence of post COVID-19 condition symptoms: a systematic review and meta-analysis of cohort study data, stratified by recruitment setting. Europe Centre For Disease Prevention And Control
Publication types
MeSH terms
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical