Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024:2753:67-104.
doi: 10.1007/978-1-0716-3625-1_3.

Development Features on the Selection of Animal Models for Teratogenic Testing

Affiliations

Development Features on the Selection of Animal Models for Teratogenic Testing

Sofia Alves-Pimenta et al. Methods Mol Biol. 2024.

Abstract

Today, the use of animal models from different species continues to represent a fundamental step in teratogenic testing, despite the increase in alternative solutions that provide an important screening to the enormous quantity of new substances that aim to enter the market every year. The maintenance of these models is due to the sharing of similar development processes with humans, and in this way they represent an important contribution to the safety in the use of the compounds tested. Furthermore, the application of advances in embryology to teratology, although hampered by the complexity of reproductive processes, continues to prove the importance of sensitivity during embryonic and fetal development to detect potential toxicity, inducing mortality/abortion and malformations.In this chapter, essential periods of development in different models are outlined, highlighting the similarities and differences between species, the advantages and disadvantages of each group, and specific sensitivities for teratogenic testing. Models can be divided into invertebrate species such as earthworms of the species Eisenia fetida/Eisenia andrei, Caenorhabditis elegans, and Drosophila melanogaster, allowing for rapid results and minor ethical concerns. Vertebrate nonmammalian species Xenopus laevis and Danio rerio are important models to assess teratogenic potential later in development with fewer ethical requirements. Finally, the mammalian species Mus musculus, Rattus norvegicus, and Oryctolagus cuniculus, phylogenetically closer to humans, are essential for the assessment of complex specialized processes, occurring later in development.Regulations for the development of toxicology tests require the use of mammalian species. Although ethical concerns and costs limit their use in large-scale screening. On the other hand, invertebrate and vertebrate nonmammalian species are increasing as alternative animal models, as these organisms combine low cost, less ethical requirements, and culture conditions compatible with large-scale screening. Their main advantage is to allow high-throughput screening in a whole-animal context, in contrast to the in vitro techniques, not dependent on the prior identification of a target. Better knowledge of the development pathways of animal models will allow to maximize human translation and reduce the number of animals used, leading to a selection of compounds with an improved safety profile and reduced time to market for new drugs.

Keywords: Animal models; Development anatomy; Developmental toxicity; Embryology; In vivo; Reproductive cycle; Teratology.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Schumann J (2010) Teratogen screening: state of the art. Avicenna J Med Biotechnol 2(3):115–121 - PubMed - PMC
    1. Drummond GB (2009) Reporting ethical matters in the Journal of Physiology: standards and advice. J Physiol 587(Pt 4):713–719. https://doi.org/10.1113/jphysiol.2008.167387 - DOI - PubMed - PMC
    1. OECD Test No. 414: prenatal development toxicity study. OECD Publishing, Paris
    1. Barrow P (2016) Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol 64:57–63. https://doi.org/10.1016/j.reprotox.2016.03.048 - DOI - PubMed
    1. Chapman KL, Holzgrefe H, Black LE, Brown M, Chellman G, Copeman C, Couch J, Creton S, Gehen S, Hoberman A, Kinter LB, Madden S, Mattis C, Stemple HA, Wilson S (2013) Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 66(1):88–103. https://doi.org/10.1016/j.yrtph.2013.03.001 - DOI - PubMed

LinkOut - more resources