Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 12;63(6):3118-3128.
doi: 10.1021/acs.inorgchem.3c04135. Epub 2024 Jan 30.

Amidinatotetrylenes Donor Functionalized on Both N Atoms: Structures and Coordination Chemistry

Affiliations

Amidinatotetrylenes Donor Functionalized on Both N Atoms: Structures and Coordination Chemistry

Christian Alonso et al. Inorg Chem. .

Abstract

E(hmds)(bqfam) (E = Ge (1a), Sn (1b); hmds = N(SiMe3)2, bqfam = N,N'-bis(quinol-8-yl)formamidinate), which are amidinatotetrylenes equipped with quinol-8-yl fragments on the amidinate N atoms, have been synthesized from the formamidine Hbqfam and Ge(hmds)2 or SnCl(hmds). Both 1a and 1b are fluxional in solution at room temperature, as the E atom oscillates from being attached to the two amidinate N atoms to being chelated by an amidinate N atom and its closest quinolyl N atom (both situations are similarly stable according to density functional theory calculations). The hmds group of 1a and 1b is still reactive and the deprotonation of another equivalent of Hbqfam can be achieved, allowing the formation of the homoleptic derivatives E(bqfam)2 (E = Ge, Sn). The reactions of 1a and 1b with [AuCl(tht)] (tht = tetrahydrothiophene), [PdCl2(MeCN)2], [PtCl2(cod)] (cod = cycloocta-1,5-diene), [Ru3(CO)12] and [Co2(CO)8] have been investigated. The gold(I) complexes [AuCl{κE-E(hmds)(bqfam)}] (E = Ge, Sn) have a monodentate κE-tetrylene ligand and display fluxional behavior in solution the same as that of 1a and 1b. However, the palladium(II) and platinum(II) complexes [MCl{κ3E,N,N'-ECl(hmds)(bqfam)}] (M = Pd, Pt; E = Ge, Sn) contain a κ3E,N,N'-chloridotetryl ligand that arises from the insertion of the tetrylene E atom into an M-Cl bond and the coordination of an amidinate N atom and its closest quinolyl N atom to the metal center. Finally, the binuclear ruthenium(0) and cobalt(0) complexes [Ru2E3E,N,N'-E(hmds)(bqfam)}(CO)6] and [Co2E3E,N,N'-E(hmds)(bqfam)}(μ-CO)(CO)4] (E = Ge, Sn) have a related κ3E,N,N'-tetrylene ligand that bridges two metal atoms through the E atom. For the κ3E,N,N'-metal complexes, the quinolyl fragment not attached to the metal is pendant in all the germanium compounds but, for the tin derivatives, is attached to (in the Pd and Pt complexes) or may interact with (in the Ru2 and Co2 complexes) the tin atom.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Types of currently known metal-free potentially polydentate ATs.
Figure 2
Figure 2
Currently known, including this work, potentially tridentate ligands featuring an AT fragment in the central position.
Scheme 1
Scheme 1. Reactions Leading to Compounds 1a, 1b, 2a, and 2b
Figure 3
Figure 3
SCXRD molecular structure of 1b [only one of the two positions in which one of the SiMe3 groups (Si1) is disordered is shown; 50% displacement ellipsoids; H atoms omitted for clarity]. Selected interatomic distances (Å) and angles (°): Sn1···N3 2.869(1), Sn1–N1 2.381(1), Sn1–N2 2.174(1), Sn1–N5 2.122(1) N2–C10 1.352(2), N3–C10 1.297(2); N3–C10–N2 116.4(1), N5–Sn1–N2 101.09(5), N5–Sn1–N1 93.05(5), N2–Sn1–N1 70.19(5).
Figure 4
Figure 4
Dynamic behavior found for 1a and 1b in solution (top) and DFT-calculated (wB97xd/SDD(Ge,Sn)/cc-pVDZ) energy profile for the κN-amidinate (1r5E) to κ2N,N′-amidinate (1r4E) interconversion for E= Ge, Sn. For clarity, the optimized structures of the transition states (TS) are not shown here but are shown in Figure S17. Gibbs energies (CPCM-toluene) are given in kcal mol–1. Interatomic distances are given in Å.
Scheme 2
Scheme 2. Syntheses of Compounds 3a and 3b and Their Dynamic Behavior in Solution
Figure 5
Figure 5
SCXRD molecular structure of 3a (30% displacement ellipsoids; H atoms omitted for clarity). Selected interatomic distances (Å) and angles (deg): Au1–Ge1 2.3280(8), Au1–Cl1 2.306(2), Ge1···N3 2.963(5), Ge1–N1 2.025(6), Ge1–N2 1.905(5), Ge1–N5 1.841(5); N2–C10 1.364(9), N3–C10 1.283(8); Cl1–Au1–Ge1 177.81(5), N3–C10–N2 118.0(6), N5–Ge1–N2 113.7(2), N5–Ge1–N1 102.9(2), N2–Ge1–N1 81.6(2), N5–Ge1–Au1 121.2(2), N2–Ge1–Au1 117.3(2), N1–Ge1–Au1 111.4(2).
Scheme 3
Scheme 3. Syntheses of Compounds 4a, 4b, 5a, and 5b
Figure 6
Figure 6
SCXRD molecular structures of 4a (top) and 4b (bottom) (30% displacement ellipsoids, H atoms omitted for clarity). Selected interatomic distances (Å) and angles (deg): 4a: Pd1–Ge1 2.2839(5), Pd1–Cl2 2.298(1), Pd1–N3 2.004(3), Pd1–N4 2.106(3), Ge1–N2 1.971(3), Ge1–N5 1.820(4), Ge1–Cl1 2.211(1), N2–C10 1.339(5), N3–C10 1.320(5); N3–Pd1–N4 80.8(1), N3–Pd1–Ge1 84.78(9), N4–Pd1–Ge1 165.5(1), N3–Pd1–Cl2 176.1(1), N4–Pd1–Cl2 101.9(1), Ge1–Pd1–Cl2 92.56(3), N3–C10–N2 121.6(4), N5–Ge1–N2 109.3(1), N5–Ge1–Cl1 106.1(1), N2–Ge1–Cl1 98.5(1), N5 Ge1 Pd1 129.9(1), N2–Ge1–Pd1 95.8(1), Cl1–Ge1–Pd1 112.39(3). 4b: Pd1–Sn1 2.4936(3), Pd1–Cl2 2.2967(9), Pd1–N3 2.016(3), Pd1–N4 2.124(3), Sn1–N1 2.314(3), Sn1–N2 2.248(3), Sn1–N5 2.107(3), Sn1–Cl1 2.431(1), N2–C10 1.336(5), N3–C10 1.305(5); N3–Pd1–N4 80.8(1), N3–Pd1–Sn1 89.64(9), N4–Pd1–Sn1 170.39(9), N3–Pd–Cl2 179.1(1), N4–Pd1–Cl2 98.82(9), Sn1–Pd1–Cl2 92.72(3), N3–C10–N2 122.4(3), N5–Sn1–N2 122.4(1), N5–Sn1–N1 85.6(1), N2–Sn1–N1 69.9(1), N5–Sn1–Cl1 116.40(9), N2–Sn1–Cl1 108.55(9), N1–Sn1–Cl1 81.76(9), N5 Sn1 Pd1 112.99(9), N2–Sn1–Pd1 85.44(8), N1–Sn1–Pd1 155.34(8), Cl1–Sn1–Pd1 105.97(3).
Scheme 4
Scheme 4. Syntheses of Compounds 6a, 6b, 7a, and 7b
Figure 7
Figure 7
SCXRD molecular structure of 6a (top; 30% displacement ellipsoids) and the DFT-optimized structure of 6b (bottom). H atoms been omitted for clarity. Selected interatomic distances (Å) and angles (deg): 6a: Ru1–Ge1 2.3898(3), Ru1–Ru2 2.9628(3), Ru1–N3 2.109(2), Ru1–N4 2.176(2), Ge1–N2 1.992(2), Ge1···N1 3.600(2), Ge1–N5 1.862(2), Ge1–Ru2 2.5063(3), N2–C10 1.330(3), N3–C10 1.320(3); N3–C10–N2 121.3(2), N5–Ge1–N2 102.6(1) N5–Ge1–Ru2 132.02(7), N2–Ge1–Ru2 111.38(6), N5–Ge1–Ru1 135.15(7), N2–Ge1–Ru1 95.91(6), Ru1–Ge1–Ru2 74.43(1) 6b: Ru1–Sn1 2.560, Ru1–Ru2 3.130, Ru1–N3 2.152, Ru1–N4 2.202, Sn1–N2 2.209, Sn1···N1 3.044, Sn1–N5 2.024, Sn1–Ru2 2.662, N2–C10 1.324, N3–C10 1.320; N3–C10–N2 123.11, N5–Sn1–N2 100.65, N5–Sn1–Ru2 140.28, N2–Sn1–Ru2 109.14, N5Sn1Ru1 133.47, N2–Sn1–Ru1 89.34, Ru1–Sn1–Ru2 73.63.

References

    1. For some reviews on general chemistry of HTs (they might include coordination chemistry), see:

    2. Zhang Y.; Wu L.; Wang H. Application of N-heterocyclic silylenes in low-valent group 13, 14 and 15 chemistry. Coord. Chem. Rev. 2023, 477, 214942–214961. 10.1016/j.ccr.2022.214942. - DOI
    3. Yao S.; Saddington A.; Xiong Y.; Driess M. Chelating Bis-silylenes As Powerful Ligands To Enable Unusual Low-Valent Main-Group Element Functions. Acc. Chem. Res. 2023, 56, 475–488. 10.1021/acs.accounts.2c00763. - DOI - PubMed
    4. Wang L.; Li Y.; Li Z.; Kira M. Isolable Silylenes and their Diverse Reactivity. Coord. Chem. Rev. 2022, 457, 214413–214431. 10.1016/j.ccr.2022.214413. - DOI
    5. Se N.; Khan S. Heavier Tetrylenes as Single Site Catalysts. Chem.—Asian J. 2021, 16, 705–719. 10.1002/asia.202100038. - DOI - PubMed
    6. Dasgupta R.; Khan S. N-Heterocyclic Germylenes and Stannylenes: Synthesis, Reactivity and Catalytic Application in a Nutshell. Adv. Organomet. Chem. 2020, 74, 105–152. 10.1016/bs.adomc.2020.04.001. - DOI
    7. Fujimori S.; Inoue S. Small Molecule Activation by Two-Coordinate Acyclic Silylenes. Eur. J. Inorg. Chem. 2020, 3131–3142. 10.1002/ejic.202000479. - DOI - PMC - PubMed
    8. Khan S.; Roesky H. W. Carbene-Stabilized Exceptional Silicon Halides. Chem.—Eur. J. 2019, 25, 1636–1648. 10.1002/chem.201801672. - DOI - PubMed
    9. Hadlington T.; Driess M.; Jones C. Low-Valent Group 14 Element Hydride Chemistry: Towards Catalysis. Chem. Soc. Rev. 2018, 47, 4176–4197. 10.1039/C7CS00649G. - DOI - PubMed
    10. Rivard E. Group 14 Inorganic Hydrocarbon Analogues. Chem. Soc. Rev. 2016, 45, 989–1003. 10.1039/C5CS00365B. - DOI - PubMed
    11. Marschner C. Silylated Group 14 Ylenes: An Emerging Class of Reactive Compounds. Eur. J. Inorg. Chem. 2015, 2015, 3805–3820. 10.1002/ejic.201500495. - DOI
    12. Prabusankar G.; Sathyanarayana A.; Suresh P.; Babu C. N.; Srinivas K.; Metla B. P. R. N-Heterocyclic Carbene Supported Heavier Group 14 Elements: Recent Progress and Challenges. Coord. Chem. Rev. 2014, 269, 96–133. 10.1016/j.ccr.2014.01.036. - DOI
    13. Izod K. Heavier group 14 complexes with anionic P-donor ligands Coord. Chem. Rev. 2013, 257, 924–945. 10.1016/j.ccr.2013.01.004. - DOI
    14. Xiong Y.; Yao S.; Driess M. Chemical Tricks To Stabilize Silanones and Their Heavier Homologues with E = O Bonds (E = Si–Pb): From Elusive Species to Isolable Building Blocks. Angew. Chem., Int. Ed. 2013, 52, 4302–4311. 10.1002/anie.201209766. - DOI - PubMed
    15. Asay M.; Jones C.; Driess M. N-Heterocyclic Carbene Analogues with Low-Valent Group 13 and Group 14 Elements: Syntheses, Structures, and Reactivities of a New Generation of Multitalented Ligands. Chem. Rev. 2011, 111, 354–396. 10.1021/cr100216y. - DOI - PubMed
    16. Mandal S. K.; Roesky H. W. Interstellar molecules: guides for new chemistry. Chem. Commun. 2010, 46, 6016–6041. 10.1039/c0cc01003k. - DOI - PubMed
    17. Mizuhata Y.; Sasamori T.; Tokitoh N. Stable Heavier Carbene Analogues. Chem. Rev. 2009, 109, 3479–2511. 10.1021/cr900093s. - DOI - PubMed
    1. For some reviews more focused on the coordination chemistry of HTs, see:

    2. Cabeza J. A.; García-Álvarez P. Tetrelanes versus Tetrylenes as Precursors to Transition Metal Complexes Featuring Tridentate PEP Tetryl Ligands (E=Si, Ge, Sn). Chem. Eur. J. 2023, 29, e202203096.10.1002/chem.202381861. - DOI - PubMed
    3. Lee V. L. Schrock-Type Silylidenes and Germylidenes Found Among the Silylene and Germylene Complexes of the Early and Mid-Transition Metals. Eur. J. Inorg. Chem. 2022, 2022, e20220017510.1002/ejic.202200175. - DOI
    4. Somerville R. J.; Campos J. Cooperativity in Transition Metal Tetrylene Complexes. Eur. J. Inorg. Chem. 2021, 2021, 3488–3498. 10.1002/ejic.202100460. - DOI - PMC - PubMed
    5. Gosh M.; Khan S. N-Heterocyclic silylenes in coinage metal chemistry: an account of recent advances. Dalton. Trans. 2021, 50, 10674–10688. 10.1039/D1DT01955D. - DOI - PubMed
    6. Tacke R.; Ribbeck T. Bis(amidinato)- and bis(guanidinato)- silylenes and silylenes with one sterically demanding amidinato or guanidinato ligand: synthesis and reactivity. Dalton Trans. 2017, 46, 13628–13659. 10.1039/C7DT01297G. - DOI - PubMed
    7. Álvarez-Rodríguez L.; Cabeza J. A.; García-Álvarez P.; Polo D. The transition-metal chemistry of amidinatosilylenes, -germylenes and -stannylenes. Coord. Chem. Rev. 2015, 300, 1–28. 10.1016/j.ccr.2015.04.008. - DOI
    8. Baumgartner J.; Marschner C. Coordination of Non-Stabilized Germylenes, Stannylenes, and Plumbylenes to Transition Metals. Rev. Inorg. Chem. 2014, 34, 119–152. 10.1515/revic-2013-0014. - DOI
    9. Blom B.; Stoelzel M.; Driess M. New Vistas in N-Heterocyclic Silylene (NHSi) Transition-Metal Coordination Chemistry: Syntheses, Structures and Reactivity towards Activation of Small Molecules. Chem.—Eur. J. 2013, 19, 40–62. 10.1002/chem.201203072. - DOI - PubMed
    10. Waterman R.; Hayes P. G.; Tilley T. D. Development and Chemical Reactivity of Transition-Metal Silylene Complexes. Acc. Chem. Res. 2007, 40, 712–719. 10.1021/ar700028b. - DOI - PubMed
    11. Lappert M. F.; Rowe R. S. The Role of Group 14 Element Carbene Analogues in Transition Metal Chemistry. Coord. Chem. Rev. 1990, 100, 267–292. 10.1016/0010-8545(90)85012-H. - DOI
    1. For some reviews more focused on HT transition-metal complexes in catalysis, see:

    2. Cabeza J. A.; García-Álvarez P. Cyclometallation of Heavier Tetrylenes: Reported Complexes and Applications in Catalysis. Eur. J. Inorg. Chem. 2021, 2021, 3315–3326. 10.1002/ejic.202100430. - DOI
    3. Zhou Y.-P.; Driess M. Isolable Silylene Ligands Can Boost Efficiencies and Selectivities in Metal-Mediated Catalysis. Angew. Chem., Int. Ed. 2019, 58, 3715–3728. 10.1002/anie.201811088. - DOI - PubMed
    4. Raoufmoghaddam S.; Zhou Y.-P.; Wang Y.; Driess M. N-heterocyclic silylenes as powerful steering ligands in catalysis. J. Organomet. Chem. 2017, 829, 2–10. 10.1016/j.jorganchem.2016.07.014. - DOI
    5. Blom B.; Gallego D.; Driess M. N-heterocyclic silylene complexes in catalysis: new frontiers in an emerging field. Inorg. Chem. Front. 2014, 1, 134–148. 10.1039/C3QI00079F. - DOI
    1. For examples of catalytic transformations promoted by metal-complexes equipped with monodentate-ATs, see:

    2. Fan Q.; Du X.; Yang W.; Li Q.; Huang W.; Sun H.; Hinz A.; Li X. Effects of silylene ligands on the performance of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes. Dalton Trans. 2023, 52, 6712–6721. 10.1039/D3DT00372H. - DOI - PubMed
    3. Hossain J.; Sai J. S.; Srinu T.; Parameswaran P.; Khan S. NHSi/NHGe-Supported Copper Halide and Pseudohalide Complexes: Synthesis and Application. Organometallics 2022, 41, 3706–3717. 10.1021/acs.organomet.2c00480. - DOI
    4. Parvin N.; Hossain J.; George A.; Parameswaran P.; Khan S. N-heterocyclic silylene stabilized monocordinated copper(I)–arene cationic complexes and their application in click chemistry. Chem. Commun. 2020, 56, 273–276. 10.1039/C9CC09115G. - DOI - PubMed
    5. Parvin N.; Mishra B.; George A.; Neralkar M.; Hossain J.; Parameswaran P.; Hotha S.; Khan S. N-Heterocyclic silylene/germylene ligands in Au(I) catalysis. Chem. Commun. 2020, 56, 7625–7628. 10.1039/D0CC03156A. - DOI - PubMed
    6. Paesch A. N.; Kreyenschmidt A.-K.; Herbst-Irmer R.; Stalke D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg. Chem. 2019, 58, 7000–7009. 10.1021/acs.inorgchem.9b00629. - DOI - PubMed
    7. Qi X.; Sun H.; Li X.; Fuhr O.; Fenske D. Synthesis and catalytic activity of N-heterocyclic silylene (NHSi) cobalt hydride for Kumada coupling reactions. Dalton Trans. 2018, 47, 2581–2588. 10.1039/C7DT04155A. - DOI - PubMed
    8. Álvarez-Rodríguez L.; Cabeza J. A.; García-Álvarez P.; Pérez-Carreño E. Ruthenium Carbene Complexes Analogous to Grubbs-I Catalysts Featuring Germylenes as Ancillary Ligands. Organometallics 2018, 37, 3399–3406. 10.1021/acs.organomet.7b00905. - DOI
    9. Khoo S. S.; Jiajia C.; Yang M.-C.; Shan Y.-L.; Su M.-D.; So C.-W. Synthesis of a Dimeric Base-Stabilized Cobaltosilylene Complex for Catalytic C–H Bond Functionalization and C–C Bond Formation. Chem.—Eur. J. 2018, 24, 14329–14334. 10.1002/chem.201803410. - DOI - PubMed
    10. Álvarez-Rodríguez L.; Cabeza J. A.; Fernández-Colinas J. M.; García-Álvarez P.; Polo D. Amidinatogermylene Metal Complexes as Homogeneous Catalysts in Alcoholic Media. Organometallics 2016, 35, 2516–2523. 10.1021/acs.organomet.6b00426. - DOI
    11. Blom B.; Enthaler S.; Inoue S.; Irran E.; Driess M. Electron-Rich N-Heterocyclic Silylene (NHSi)–Iron Complexes: Synthesis, Structures, and Catalytic Ability of an Isolable Hydridosilylene–Iron Complex. J. Am. Chem. Soc. 2013, 135, 6703–6803. 10.1021/ja402480v. - DOI - PubMed
    1. For examples of catalytic transformations promoted by metal complexes equipped with polydentate-ATs, see:

    2. Jia H.; Du S.; Xu C.; Mo Z. Hydrogenation of Olefins Catalyzed by a Cobalt(I) Hydride Complex with N-Heterocyclic Silylene. Eur. J. Inorg. Chem. 2023, 26, e20230008610.1002/ejic.202300086. - DOI
    3. Roque J. B.; Pabst T. P.; Chirik P. J. C(sp2)–H Activation with Bis(silylene)pyridine Cobalt(III) Complexes: Catalytic Hydrogen Isotope Exchange of Sterically Hindered C–H Bonds. ACS Catal. 2022, 12, 8877–8885. 10.1021/acscatal.2c02429. - DOI - PMC - PubMed
    4. Lücke M.-P.; Yao S.; Driess M. Boosting homogeneous chemoselective hydrogenation of olefins mediated by a bis(silylenyl)terphenyl-nickel(0) pre-catalyst. Chem. Sci. 2021, 12, 2909–2915. 10.1039/D0SC06471H. - DOI - PMC - PubMed
    5. Sun X.; Simler T.; Kraetschmer F.; Roesky P. W. Thermally Stable Rare-Earth Metal Complexes Supported by Chelating Silylene Ligands. Organometallics 2021, 40, 2100–2107. 10.1021/acs.organomet.1c00238. - DOI
    6. Li S.; Wang Y.; Yang W.; Li K.; Sun H.; Li X.; Fuhr O.; Fenske D. N2 Silylation Catalyzed by a Bis(silylene)-Based [SiCSi] Pincer Hydrido Iron(II) Dinitrogen Complex. Organometallics 2020, 39, 757–766. 10.1021/acs.organomet.0c00025. - DOI
    7. Arevalo R.; Pabst T. P.; Chirik P. J. C(sp2)–H Borylation of Heterocycles by Well-Defined Bis(silylene)pyridine Cobalt(III) Precatalysts: Pincer Modification, C(sp2)–H Activation, and Catalytically Relevant Intermediates. Organometallics 2020, 39, 2763–2773. 10.1021/acs.organomet.0c00382. - DOI - PMC - PubMed
    8. Qi X.; Zheng T.; Zhou J.; Dong Y.; Zuo X.; Li X.; Sun H.; Fuhr O.; Fenske D. Synthesis and Catalytic Activity of Iron Hydride Ligated with Bidentate N-Heterocyclic Silylenes for Hydroboration of Carbonyl Compounds. Organometallics 2019, 38, 268–277. 10.1021/acs.organomet.8b00700. - DOI
    9. Zhou Y.-P.; Mo Z.; Luecke M.-P.; Driess M. Stereoselective Transfer Semi-Hydrogenation of Alkynes to E-Olefins with N-Heterocyclic Silylene–Manganese Catalysts. Chem.—Eur. J. 2018, 24, 4780–4784. 10.1002/chem.201705745. - DOI - PubMed
    10. Bai Y.; Zhanga J.; Cui C. An arene-tethered silylene ligand enabling reversible dinitrogen binding to iron and catalytic silylation. Chem. Commun. 2018, 54, 8124–8127. 10.1039/C8CC03734E. - DOI - PubMed
    11. Mo Z.; Kostenko A.; Zhou Y.-P.; Yao S.; Driess M. Chelate Silylene–Silyl Ligand Can Boost Rhodium-Catalyzed C–H Bond Functionalization Reactions. Chem.—Eur. J. 2018, 24, 14608–14612. 10.1002/chem.201803089. - DOI - PubMed
    12. Cabeza J. A.; García-Álvarez P.; González-Álvarez L. Facile cyclometallation of a mesitylsilylene: synthesis and preliminary catalytic activity of iridium(III) and iridium(V) iridasilacyclopentenes. Chem. Commun. 2017, 53, 10275–10278. 10.1039/C7CC04832G. - DOI - PubMed
    13. Schmidt M.; Blom B.; Szilvási T.; Schomacker R.; Driess M. Improving the Catalytic Activity in the Rhodium-Mediated Hydroformylation of Styrene by a Bis(N-heterocyclic silylene) Ligand. Eur. J. Inorg. Chem. 2017, 2017, 1284–1291. 10.1002/ejic.201700148. - DOI
    14. Luecke M. P.; Porwai D.; Kostenko A.; Zhou Y.-P.; Yao S.; Keck M.; Limberg C.; Oestreich M.; Driess M. Bis(silylenyl)-substituted ferrocene-stabilized η6-arene iron(0) complexes: synthesis, structure and catalytic application. Dalton Trans. 2017, 46, 16412–16418. 10.1039/C7DT03301J. - DOI - PubMed
    15. Ren H.; Zhou Y.-P.; Bai Y.; Cui C.; Driess M. Cobalt-Catalyzed Regioselective Borylation of Arenes: N-Heterocyclic Silylene as an Electron Donor in the Metal-Mediated Activation of C–H Bonds. Chem.—Eur. J. 2017, 23, 5663–5667. 10.1002/chem.201605937. - DOI - PubMed
    16. Wang Y.; Kostenko A.; Yao S.; Driess M. Divalent Silicon-Assisted Activation of Dihydrogen in a Bis(N-heterocyclic silylene)xanthene Nickel(0) Complex for Efficient Catalytic Hydrogenation of Olefins. J. Am. Chem. Soc. 2017, 139, 13499–13506. 10.1021/jacs.7b07167. - DOI - PubMed
    17. Zhou Y.-P.; Raoufmoghaddam S.; Szilvási T.; Driess M. A Bis(silylene)-Substituted ortho-Carborane as a Superior Ligand in the Nickel-Catalyzed Amination of Arenes. Angew. Chem., Int. Ed. 2016, 55, 12868–12872. 10.1002/anie.201606979. - DOI - PubMed
    18. Metsänen T. T.; Gallego D.; Szilvási T.; Driess M.; Oestreich M. Peripheral mechanism of a carbonyl hydrosilylation catalysed by an SiNSi iron pincer complex. Chem. Sci. 2015, 6, 7143–7149. 10.1039/C5SC02855H. - DOI - PMC - PubMed
    19. Gallego D.; Inoue S.; Blom B.; Driess M. Highly Electron-Rich Pincer-Type Iron Complexes Bearing Innocent Bis(metallylene)pyridine Ligands: Syntheses, Structures, and Catalytic Activity. Organometallics 2014, 33, 6885–6897. 10.1021/om500966t. - DOI
    20. Gallego D.; Bruck A.; Irran E.; Meier F.; Kaupp M.; Driess M.; Hartwig J. F. From Bis(silylene) and Bis(germylene) Pincer-Type Nickel(II) Complexes to Isolable Intermediates of the Nickel-Catalyzed Sonogashira Cross-Coupling Reaction. J. Am. Chem. Soc. 2013, 135, 15617–15626. 10.1021/ja408137t. - DOI - PubMed
    21. Someya C. I.; Haberberger M.; Wang W.; Enthalter S.; Inoue S. Application of a Bis(silylene) Nickel Complex as Precatalyst in C–C Bond Formation Reactions. Chem. Lett. 2013, 42, 286–288. 10.1246/cl.2013.286. - DOI
    22. Wang W.; Inoue S.; Enthaler S.; Driess M. Bis(silylenyl)- and Bis(germylenyl)-Substituted Ferrocenes: Synthesis, Structure, and Catalytic Applications of Bidentate Silicon(II)–Cobalt Complexes. Angew. Chem., Int. Ed. 2012, 51, 6167–6171. 10.1002/anie.201202175. - DOI - PubMed
    23. Brück A.; Gallego D.; Wang W.; Irran E.; Driess M.; Hartwig J. F. Pushing the σ-Donor Strength in Iridium Pincer Complexes: Bis(silylene) and Bis(germylene) Ligands Are Stronger Donors than Bis(phosphorus(III)) Ligands. Angew. Chem., Int. Ed. 2012, 51, 11478–11482. 10.1002/anie.201205570. - DOI - PubMed
    24. Ahuja H.; Kaur H.; Arevalo R. Chemoselective C(sp)–H borylation of terminal alkynes catalyzed by a bis(N-heterocyclicsilylene) manganese complex. Inorg. Chem. Front. 2023, 10, 6067–6076. 10.1039/D3QI01033C. - DOI