Quantifying Fibrosis in Fibrotic Lung Disease: A Good Human Plus a Machine Is the Best Combination?
- PMID: 38299920
- PMCID: PMC10848908
- DOI: 10.1513/AnnalsATS.202311-954ED
Quantifying Fibrosis in Fibrotic Lung Disease: A Good Human Plus a Machine Is the Best Combination?
Comment on
-
Deep Learning-based Fibrosis Extent on Computed Tomography Predicts Outcome of Fibrosing Interstitial Lung Disease Independent of Visually Assessed Computed Tomography Pattern.Ann Am Thorac Soc. 2024 Feb;21(2):218-227. doi: 10.1513/AnnalsATS.202301-084OC. Ann Am Thorac Soc. 2024. PMID: 37696027
References
-
- Walsh SLF, Mackintosh JA, Calandriello L, Silva M, Sverzellati N, Larici AR, et al. Deep learning-based outcome prediction in progressive fibrotic lung disease using high-resolution computed tomography. Am J Respir Crit Care Med . 2022;206:883–891. - PubMed
-
- Wu X, Kim GH, Salisbury ML, Barber D, Bartholmai BJ, Brown KK, et al. Computed tomographic biomarkers in idiopathic pulmonary fibrosis: the future of quantitative analysis. Am J Respir Crit Care Med . 2019;199:12–21. - PubMed
-
- Humphries SM, Swigris JJ, Brown KK, Strand M, Gong Q, Sundy JS, et al. Quantitative high-resolution computed tomography fibrosis score: performance characteristics in idiopathic pulmonary fibrosis. Eur Respir J . 2018;52:1801384. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
