Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 16;26(6):1261-1264.
doi: 10.1021/acs.orglett.4c00095. Epub 2024 Feb 1.

Addition of Carboxylic Acids to gem-Difluoroalkenes for the Synthesis of gem-Difluoromethylenated Compounds

Affiliations

Addition of Carboxylic Acids to gem-Difluoroalkenes for the Synthesis of gem-Difluoromethylenated Compounds

Yuwei Zong et al. Org Lett. .

Abstract

We herein describe a straightforward protocol for the synthesis of carboxylic esters containing a gem-difluoromethylene unit. Readily available carboxylic acids can act as nucleophiles to add regioselectively to tetrasubstituted or trisubstituted β,β-difluoroacrylates (formal hydroacetoxylation) for the construction of RCO2-CF2 bonds. Thermal conditions are sufficient without the use of catalysts or additives.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Hydrofunctionalization of gem-Difluoroalkenes
Scheme 2
Scheme 2. Initial Results
Scheme 3
Scheme 3. Addition of Carboxylic Acids to Tetrasubstituted gem-Difluoroalkenes
Unless specified otherwise, reactions were carried out using 0.2 mmol of 1 for 48 h. Isolated yields. Condition A: 10 equiv of carboxylic acid at 75 °C. Condition B: 3.0 equiv of carboxylic acid at 150 °C.
Scheme 4
Scheme 4. Addition of Carboxylic Acids to a Trisubstituted gem-Difluoroalkene
Unless specified otherwise, reactions were carried out using 0.2 mmol of 3a for 24 h. Isolated yields.
Scheme 5
Scheme 5. Addition of Sulfonic Acids to a Trisubstituted gem-Difluoroalkene

Similar articles

Cited by

References

    1. Krishnamoorthy S.; Prakash G. K. S. Silicon-Based Reagents for Difluoromethylation and Difluoromethylenation Reactions. Synthesis 2017, 49, 3394–3406. 10.1055/s-0036-1588489. - DOI
    2. Yerien D. E.; Barata-Vallejo S.; Postigo A. Difluoromethylation Reactions of Organic Compounds. Chem. - Eur. J. 2017, 23, 14676–14701. 10.1002/chem.201702311. - DOI - PubMed
    3. Sap J. B. I.; Meyer C. F.; Straathof N. J. W.; Iwumene N.; am Ende C. W.; Trabanco A. S.; Gouverneur V. Late-Stage Difluoromethylation: Concepts, Developments and Perspective. Chem. Soc. Rev. 2021, 50, 8214–8247. 10.1039/D1CS00360G. - DOI - PubMed
    1. Holovach S.; Melnykov K. P.; Skreminskiy A.; Herasymchuk M.; Tavlui O.; Aloshyn D.; Borysko P.; Rozhenko A. B.; Ryabukhin S. V.; Volochnyuk D. M.; Grygorenko O. O. Effect of gem-Difluorination on the Key Physicochemical Properties Relevant to Medicinal Chemistry: The Case of Functionalized Cycloalkanes. Chem. - Eur. J. 2022, 28, e2022003310.1002/chem.202200331. - DOI - PubMed
    1. Sorrentino J. P.; Altman R. A. Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes. Synthesis 2021, 53, 3935–3950. 10.1055/a-1547-9270. - DOI - PMC - PubMed
    2. Liu C.; Zeng H.; Zhu C.; Jiang H. Recent Advances in Three-Component Difunctionalization of gem-Difluoroalkenes. Chem. Commun. 2020, 56, 10442–10452. 10.1039/D0CC04318D. - DOI - PubMed
    3. Nguyen B. V.; Burton D. J. A New Route for the Preparation of Substituted 2,2-Difluorostyrenes and A Convenient Route to Substituted (2,2,2-Trifluoroethyl)benzenes. J. Org. Chem. 1997, 62, 7758–7764. 10.1021/jo971019w. - DOI
    4. Riss P. J.; Aigbirhio F. I. A simple, Rapid Procedure for Nucleophilic Radiosynthesis of Aliphatic [18F]Trifluoromethyl Groups. Chem. Commun. 2011, 47, 11873–11875. 10.1039/c1cc15342k. - DOI - PubMed
    1. Fujita T.; Fuchibe K.; Ichikawa J. Transition-Metal-Mediated and -Catalyzed C-F Bond Activation by Fluorine Elimination. Angew. Chem., Int. Ed. 2019, 58, 390–402. 10.1002/anie.201805292. - DOI - PubMed
    2. Zhang X.; Cao S. Recent Advances in the Synthesis and C-F Functionalization of gem-Difluoroalkenes. Tetrahedron Lett. 2017, 58, 375–392. 10.1016/j.tetlet.2016.12.054. - DOI
    3. Amii H.; Uneyama K. C-F. Bond Activation in Organic Synthesis. Chem. Rev. 2009, 109, 2119–2183. 10.1021/cr800388c. - DOI - PubMed
    1. Orsi D. L.; Easley B. J.; Lick A. M.; Altman R. A. Base Catalysis Enables Access to α. α-Difluoroalkylthioethers. Org. Lett. 2017, 19, 1570–1573. 10.1021/acs.orglett.7b00386. - DOI - PMC - PubMed
    2. Orsi D. L.; Yadav M. R.; Altman R. A. Organocatalytic Strategy for Hydrophenolation of gem-Difluoroalkenes. Tetrahedron 2019, 75, 4325–4336. 10.1016/j.tet.2019.04.016. - DOI - PMC - PubMed
    3. Sorrentino J. P.; Orsi D. L.; Altman R. A. Acid-Catalyzed Hydrothiolation of gem-Difluorostyrenes to Access α,α-Difluoroalkylthioethers. J. Org. Chem. 2021, 86, 2297–2311. 10.1021/acs.joc.0c02440. - DOI - PMC - PubMed
    4. Herrick R. M.; Abd El-Gaber M. K.; Coy G.; Altman R. A. A Diselenide Additive Enables Photocatalytic Hydroalkoxylation of gem-Difluoroalkenes. Chem. Commun. 2023, 59, 5623–5626. 10.1039/D3CC01012K. - DOI - PMC - PubMed