Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May:102:172-180.
doi: 10.1016/j.avsg.2023.11.045. Epub 2024 Feb 1.

Predictors of Occlusion after Carotid Stenting

Affiliations

Predictors of Occlusion after Carotid Stenting

Paul Rothenberg et al. Ann Vasc Surg. 2024 May.

Abstract

Background: Carotid artery stent (CAS) occlusion is a rare complication not well studied. We used a national dataset to assess real world CAS experience to determine the rate of stent occlusion. The purpose of this study was to 1) Identify risk factors associated with CAS occlusion on long-term follow-up (LTFU) and 2) Determine the adjusted odds of death/transient ischemic attack (TIA)/stroke (cerebrovascular accident (CVA)) in patients with occlusion.

Methods: The national Vascular Quality Initiative CAS dataset (2016-2021) comprised the sample. The primary endpoint was occlusion on LTFU (9-21 months postoperatively as defined by the Vascular Quality Initiative LTFU dataset) with secondary endpoint examining a composite of death/TIA/CVA. Descriptive analyses used chi-square and Wilcoxon tests for categorical and continuous variables respectively. Adjustment variables were selected a priori based on clinical expertise and univariate analyses. Multivariable logistic regression was used to model the odds of occlusion and the odds of death/TIA/CVA. Generalized estimating equations accounted for center level variation.

Results: During the study period, 109 occlusions occurred in 12,143 cases (0.9%). On univariate analyses, symptomatic indication, prior stroke, prior neck radiation, lesion calcification (>50%), stenosis (>80%), distal embolic protection device (compared to flow reversal), balloon size, >1 stent and current smoking at time of LTFU were predictive for occlusion. Age ≥ 65, coronary artery disease (CAD), elective status, preoperative statin, preoperative and discharge P2Y12 inhibitor, use of any protection device intraoperatively and protamine were protective. On multivariable analyses, age ≥ 65, CAD, elective status and P2Y12 inhibitor on discharge were protective for occlusion, while patients with prior radiation and those taking P2Y12 inhibitor on LTFU were at increased odds. The adjusted odds of death/TIA/CVA in patients with occlusion on LTFU were 6.05; 95% confidence interval: 3.61-10.11, P < 0.0001.

Conclusions: This study provides an in-depth analysis of predictors for CAS occlusion on LTFU. On univariate analyses, variables related to disease severity (urgency, degree of stenosis, nature of lesion) and intraoperative details (balloon diameter, >1 stent) were predictive for occlusion. These variables were not statistically significant after risk adjustment. On multivariable analyses, prior neck radiation was strongly predictive of occlusion. Elective status, patient age ≥ 65, CAD, and P2Y12 inhibitor upon discharge (but not on LTFU) were protective for occlusion. Additionally, patients who developed occlusion had high odds for death/TIA/CVA. These findings provide important data to guide clinical decision-making for carotid disease management, particularly identifying high-risk features for CAS occlusion. Closer postoperative follow-up and aggressive risk factor modification in these patients may be merited.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest/Disclosure Statement: The authors have no conflicts of interest to disclose.

References

    1. Mantese VA, Timaran CH, Chiu D, Begg RJ, Brott TG. The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST): stenting versus carotid endarterectomy for carotid disease. Stroke. 2010;41(10 Suppl):S31–4. - PMC - PubMed
    1. Liang P, Soden P, Wyers MC, Malas MB, Nolan BW, Wang GJ, et al. The role of transfemoral carotid artery stenting with proximal balloon occlusion embolic protection in the contemporary endovascular management of carotid artery stenosis. J Vasc Surg. 2020;72(5):1701–10. - PubMed
    1. Müller MD, Gregson J, McCabe DJH, Nederkoorn PJ, van der Worp HB, de Borst GJ, et al. Stent Design, Restenosis and Recurrent Stroke After Carotid Artery Stenting in the International Carotid Stenting Study. Stroke. 2019;50(11):3013–20. - PubMed
    1. Schneider PA, Levy E, Bacharach JM, Metzger DC, Randall B, Garcia A, et al. A First-in-Human Evaluation of a Novel Mesh-Covered Stent for Treatment of Carotid Stenosis in Patients at High Risk for Endarterectomy: 30-Day Results of the SCAFFOLD Trial. JACC Cardiovasc Interv. 2018;11(23):2396–404. - PubMed
    1. Jiao LQ, Song G, Li SM, Miao ZR, Zhu FS, Ji XM, et al. Thirty-day outcome of carotid artery stenting in Chinese patients: a single-center experience. Chin Med J (Engl). 2013;126(20):3915–20. - PubMed

MeSH terms