Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Mar;45(2):133-139.
doi: 10.1007/s00292-024-01308-7. Epub 2024 Feb 5.

[Explainable artificial intelligence in pathology]

[Article in German]
Affiliations
Review

[Explainable artificial intelligence in pathology]

[Article in German]
Frederick Klauschen et al. Pathologie (Heidelb). 2024 Mar.

Abstract

With the advancements in precision medicine, the demands on pathological diagnostics have increased, requiring standardized, quantitative, and integrated assessments of histomorphological and molecular pathological data. Great hopes are placed in artificial intelligence (AI) methods, which have demonstrated the ability to analyze complex clinical, histological, and molecular data for disease classification, biomarker quantification, and prognosis estimation. This paper provides an overview of the latest developments in pathology AI, discusses the limitations, particularly concerning the black box character of AI, and describes solutions to make decision processes more transparent using methods of so-called explainable AI (XAI).

Mit den Entwicklungen der Präzisionsmedizin steigen die Anforderungen an die pathologische Diagnostik, histomorphologische und molekularpathologische Daten standardisiert, quantitativ und integriert zu beurteilen. Große Hoffnungen werden in Verfahren der Künstlichen Intelligenz (KI) gesetzt, die gezeigt haben, komplexe klinische, histologische und molekulare Daten zur Krankheitsklassifikation, Biomarkerquantifizierung und Prognoseabschätzung auswerten zu können. Diese Arbeit gibt einen Überblick über neueste Entwicklungen der KI in der Pathologie, diskutiert die Grenzen insbesondere hinsichtlich der Intransparenz der KI und beschreibt Lösungen, die Entscheidungsprozesse mit Verfahren der sog. erklärbaren KI („explainable AI“, XAI) transparenter zu gestalten.

Keywords: Artificial intelligence; Biomarkers; Machine learning; Molecular biology; Precision medicine.

PubMed Disclaimer

References

Literatur

    1. Klauschen F, Dippel J, Keyl P et al (2024) Toward explainable artificial intelligence for precision pathology. Annu Rev Pathol Mech Dis 19:541–570 - DOI
    1. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ (Hrsg) Advances in Neural Information Processing Systems 25, S 1106–1114
    1. Ronneberger O, Fischer P, Brox T (2015) U‑net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18. Springer, S 234–241
    1. Ren S, Kaiming H, Ross B et al (2017) Faster R‑CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149 - PubMed - DOI
    1. Brown TB, Mann B, Ryder N et al (2020) Language models are few-shot learners. In: NeurIPS