Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 5;14(7):4587-4590.
doi: 10.1039/d3ra07398j. eCollection 2024 Jan 31.

Iodine-catalyzed regioselective direct sulfenylation of uracil with sulfonyl hydrazide as sulfur source under solvent free conditions

Affiliations

Iodine-catalyzed regioselective direct sulfenylation of uracil with sulfonyl hydrazide as sulfur source under solvent free conditions

Cong Wang et al. RSC Adv. .

Abstract

A facile method was developed for the selective thioetherification of uracils using sulfonyl hydrazide as the thioetherification reagent. This method offers advantages such as avoiding the use of additives and expensive metal catalysts, and providing good to excellent yields of various uracil thioethers. Experimental studies have demonstrated that the reaction follows a free radical pathway. Notably, the reaction can be carried out without solvent.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Selected examples of biologically active 5-sulfur-substituted uracil.
Scheme 1
Scheme 1. Previous protocols for the generation of 5-sulfur-substituted uracil derivatives (a and b) and our approach (c).
Scheme 2
Scheme 2. Range of substrates for sulfonyl hydrazide and uracil sulfonation.[a,b]
Scheme 3
Scheme 3. Scale-up experiments and post-functionalization of sulfonylurea products.
Scheme 4
Scheme 4. Control experiments.
Scheme 5
Scheme 5. Possible radical-mediated reaction mechanism.

References

    1. Nguyen M. T. Moiani D. Ahmed Z. Arvai A. S. Namjoshi S. Shin D. S. Fedorov Y. Selvik E. J. Jones D. E. Pink J. Yan Y. Laverty D. J. Nagel Z. D. Tainer J. A. Gerson S. L. Prog. Biophys. Mol. Biol. 2021;163:143–159. doi: 10.1016/j.pbiomolbio.2021.02.004. - DOI - PMC - PubMed
    2. Ramesh D. Vijayakumar B. G. Kannan T. Eur. J. Med. Chem. 2020;207:112801. doi: 10.1016/j.ejmech.2020.112801. - DOI - PubMed
    1. Gunasekaran V. P. Nishi K. Sivakumar D. Sivaraman T. Mathan G. Eur. J. Pharm. Sci. 2018;116:2–14. doi: 10.1016/j.ejps.2017.09.019. - DOI - PubMed
    2. Woodman P. W. Sarrif A. M. Heidelberger C. Biochem. Pharmacol. 1980;29:1059–1063. doi: 10.1016/0006-2952(80)90170-7. - DOI - PubMed
    3. Al Safarjalani O. N. Zhou X. J. Rais R. H. Shi J. Schinazi R. F. Naguib F. N. El Kouni M. H. Cancer Chemother. Pharmacol. 2005;55:541–551. doi: 10.1007/s00280-004-0967-y. - DOI - PubMed
    1. Li X. D. Gao Y. T. Sun Y. J. Jin X. Y. Wang D. Liu L. Cheng L. Org. Lett. 2019;21:6643–6647. doi: 10.1021/acs.orglett.9b02183. - DOI - PubMed
    2. Beukeaw D. Noikham M. Yotphan S. Tetrahedron. 2019;75:130537. doi: 10.1016/j.tet.2019.130537. - DOI
    3. Probst N. Lartia R. Thery O. Alami M. Defrancq E. Messaoudi S. Chem.–Eur. J. 2018;24:1795–1800. doi: 10.1002/chem.201705371. - DOI - PubMed
    1. Noikham M. Yotphan S. Eur. J. Org Chem. 2019;2019:2759–2766. doi: 10.1002/ejoc.201900343. - DOI
    2. Botha F. Slavickova M. Pohl R. Hocek M. Org. Biomol. Chem. 2016;14:10018–10022. doi: 10.1039/C6OB01917J. - DOI - PubMed
    1. Kopp F. Knochel P. Org. Lett. 2007;9:1639–1641. doi: 10.1021/ol063136w. - DOI - PubMed

LinkOut - more resources