Beyond typical histology of BAP1-inactivated melanocytoma
- PMID: 38326181
- DOI: 10.1016/j.prp.2024.155162
Beyond typical histology of BAP1-inactivated melanocytoma
Abstract
BAP1-inactivated melanocytoma (BIM) is a novel subgroup of melanocytic neoplasm listed in the 5th edition of WHO classification of skin tumor. BIM is characterized by two molecular alterations, including a mitogenic driver mutation (usually BRAF gene) and the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21, which encodes for BRCA1-associated protein (BAP1). The latter represents a nuclear-localized deubiquitinase involved in several cellular processes including cell cycle regulation, chromatin remodeling, DNA damage response, differentiation, senescence and cell death. BIMs are histologically characterized by a population of large epithelioid melanocytes with well-demarcated cytoplasmic borders and copious eosinophilic cytoplasm, demonstrating loss of BAP1 nuclear expression by immunohistochemistry. Recently, we have published a series of 50 cases, extending the morphological spectrum of the neoplasm and highlighting some new microscopic features. In the current article, we focus on some new histological features, attempting to explain and link them to certain mechanisms of tumor development, including senescence, endoreplication, endocycling, asymmetric cytokinesis, entosis and others. In light of the morphological and molecular findings observed in BIM, we postulated that this entity unmasks a fine mechanism of tumor in which both clonal/stochastic and hierarchical model can be unified.
Keywords: Asymmetric cytokinesis; BAP1-inactivated melanocytic tumor; Entosis; Kariokinesis; Multinucleated polypoid giant cells.
Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
