Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr;29(4):1063-1074.
doi: 10.1038/s41380-023-02392-6. Epub 2024 Feb 7.

White matter diffusion estimates in obsessive-compulsive disorder across 1653 individuals: machine learning findings from the ENIGMA OCD Working Group

Bo-Gyeom Kim #  1 Gakyung Kim #  2 Yoshinari Abe  3 Pino Alonso  4   5   6 Stephanie Ameis  7   8   9 Alan Anticevic  10 Paul D Arnold  11   12 Srinivas Balachander  13 Nerisa Banaj  14 Nuria Bargalló  15   16 Marcelo C Batistuzzo  17   18 Francesco Benedetti  19   20 Sara Bertolín  5   21 Jan Carl Beucke  22   23   24 Irene Bollettini  20 Silvia Brem  25   26 Brian P Brennan  27   28 Jan K Buitelaar  29   30 Rosa Calvo  5   31   32   33 Miguel Castelo-Branco  34   35   36 Yuqi Cheng  37 Ritu Bhusal Chhatkuli  38   39 Valentina Ciullo  14 Ana Coelho  40   41   42 Beatriz Couto  40   41   42 Sara Dallaspezia  43 Benjamin A Ely  44 Sónia Ferreira  40   41   42 Martine Fontaine  45 Jean-Paul Fouche  46 Rachael Grazioplene  10 Patricia Gruner  10 Kristen Hagen  47   48 Bjarne Hansen  48   49 Gregory L Hanna  50 Yoshiyuki Hirano  38   39 Marcelo Q Höxter  17 Morgan Hough  51 Hao Hu  52 Chaim Huyser  53   54 Toshikazu Ikuta  55 Neda Jahanshad  56 Anthony James  57 Fern Jaspers-Fayer  58   59 Selina Kasprzak  60   61 Norbert Kathmann  22 Christian Kaufmann  22 Minah Kim  62   63 Kathrin Koch  64   65 Gerd Kvale  48   66 Jun Soo Kwon  63   67   68 Luisa Lazaro  5   31   32   33 Junhee Lee  62   69 Christine Lochner  70 Jin Lu  71 Daniela Rodriguez Manrique  64   65   72 Ignacio Martínez-Zalacaín  4   73 Yoshitada Masuda  74 Koji Matsumoto  74 Maria Paula Maziero  75   76 Jose M Menchón  4   5   6 Luciano Minuzzi  77   78 Pedro Silva Moreira  40   41   79 Pedro Morgado  40   41   42 Janardhanan C Narayanaswamy  13 Jin Narumoto  80 Ana E Ortiz  31   32   33 Junko Ota  38   39 Jose C Pariente  16 Chris Perriello  81 Maria Picó-Pérez  40   41   82 Christopher Pittenger  10   83   84   85 Sara Poletti  20 Eva Real  5   6 Y C Janardhan Reddy  13 Daan van Rooij  86 Yuki Sakai  80   87 João Ricardo Sato  88   89 Cinto Segalas  5   6 Roseli G Shavitt  90 Zonglin Shen  37 Eiji Shimizu  38   39   91 Venkataram Shivakumar  92 Noam Soreni  93   94 Carles Soriano-Mas  5   6   95 Nuno Sousa  40   41   42 Mafalda Machado Sousa  40   41   42 Gianfranco Spalletta  14   96 Emily R Stern  97   98 S Evelyn Stewart  58   99   100 Philip R Szeszko  101   102 Rajat Thomas  103 Sophia I Thomopoulos  56 Daniela Vecchio  14 Ganesan Venkatasubramanian  13 Chris Vriend  60   61   104 Susanne Walitza  25   26 Zhen Wang  105 Anri Watanabe  80 Lidewij Wolters  106 Jian Xu  107 Kei Yamada  108 Je-Yeon Yun  109   110 Mojtaba Zarei  111 Qing Zhao  105 Xi Zhu  112   113 ENIGMA-OCD Working GroupPaul M Thompson  56 Willem B Bruin  104   114 Guido A van Wingen  104   114 Federica Piras  14 Fabrizio Piras  14 Dan J Stein  115   116 Odile A van den Heuvel  60   61 Helen Blair Simpson  45 Rachel Marsh  45 Jiook Cha  117   118
Collaborators, Affiliations

White matter diffusion estimates in obsessive-compulsive disorder across 1653 individuals: machine learning findings from the ENIGMA OCD Working Group

Bo-Gyeom Kim et al. Mol Psychiatry. 2024 Apr.

Erratum in

  • Correction: White matter diffusion estimates in obsessive-compulsive disorder across 1653 individuals: machine learning findings from the ENIGMA OCD Working Group.
    Kim BG, Kim G, Abe Y, Alonso P, Ameis S, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargalló N, Batistuzzo MC, Benedetti F, Bertolín S, Beucke JC, Bollettini I, Brem S, Brennan BP, Buitelaar JK, Calvo R, Castelo-Branco M, Cheng Y, Chhatkuli RB, Ciullo V, Coelho A, Couto B, Dallaspezia S, Ely BA, Ferreira S, Fontaine M, Fouche JP, Grazioplene R, Gruner P, Hagen K, Hansen B, Hanna GL, Hirano Y, Höxter MQ, Hough M, Hu H, Huyser C, Ikuta T, Jahanshad N, James A, Jaspers-Fayer F, Kasprzak S, Kathmann N, Kaufmann C, Kim M, Koch K, Kvale G, Kwon JS, Lazaro L, Lee J, Lochner C, Lu J, Manrique DR, Martínez-Zalacaín I, Masuda Y, Matsumoto K, Maziero MP, Menchón JM, Minuzzi L, Moreira PS, Morgado P, Narayanaswamy JC, Narumoto J, Ortiz AE, Ota J, Pariente JC, Perriello C, Picó-Pérez M, Pittenger C, Poletti S, Real E, Reddy YCJ, van Rooij D, Sakai Y, Sato JR, Segalas C, Shavitt RG, Shen Z, Shimizu E, Shivakumar V, Soreni N, Soriano-Mas C, Sousa N, Sousa MM, Spalletta G, Stern ER, Stewart SE, Szeszko PR, Thomas R, Thomopoulos SI, Vecchio D, Venkatasubramanian G, Vriend C, Walitza S, Wang Z, Watanabe A, Wolters L, Xu J, Yamada K, Yun JY, Zarei M, Zhao Q, Zhu X; ENIGMA-OCD Working Group; Tho… See abstract for full author list ➔ Kim BG, et al. Mol Psychiatry. 2024 Apr;29(4):1216. doi: 10.1038/s41380-024-02494-9. Mol Psychiatry. 2024. PMID: 38454086 Free PMC article. No abstract available.

Abstract

White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls) and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD Working Group. We used an automatic machine learning pipeline (with feature engineering and selection, and model optimization) and examined the cross-site generalizability of the OCD classification models using leave-one-site-out cross-validation. Our models showed low-to-moderate accuracy in classifying (1) "OCD vs. healthy controls" (Adults, receiver operator characteristic-area under the curve = 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39), (2) "unmedicated OCD vs. healthy controls" (Adults, 62.67 ± 3.84; Children, 48.51 ± 10.14), and (3) "medicated OCD vs. unmedicated OCD" (Adults, 76.72 ± 3.97; Children, 72.45 ± 8.87). There was significant site variability in model performance (cross-validated ROC AUC ranges 51.6-79.1 in adults; 35.9-63.2 in children). Machine learning interpretation showed that diffusivity measures of the corpus callosum, internal capsule, and posterior thalamic radiation contributed to the classification of OCD from HC. The classification performance appeared greater than the model trained on grey matter morphometry in the prior ENIGMA OCD study (our study includes subsamples from the morphometry study). Taken together, this study points to the meaningful multivariate patterns of white matter features relevant to the neurobiology of OCD, but with low-to-moderate classification accuracy. The OCD classification performance may be constrained by site variability and medication effects on the white matter integrity, indicating room for improvement for future research.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. A biplot of principal component analysis (PCA) using the diffusion tensor estimates of the major white matter fascicules across the 18 international sites.
A PCA biplot before applying NeuroCombat. (Left: Adult, Right: Pediatric). Some sites (e.g., site B) show apparent clusters distinct from the rest of the sites. B PCA biplot after applying NeuroCombat. (Left: Adult, Right: Pediatric).
Fig. 2
Fig. 2. Classification of OCD diagnosis and medication status using diffusion tensor estimates.
A Classification performances in adult samples. B Classification performances in pediatric samples.
Fig. 3
Fig. 3. Sample characteristics and prediction performance (ROC AUC) across sites.
A In adult samples. B In pediatric samples. Left: Violin plots of sociodemographic, clinical, and 763 brain features across sites, Right: Box plot of the area under the receiver operating 764 characteristic curve (ROC AUC) for the leave-one-site-out (LOSO) cross validation in the 765 diagnosis classification task (OCD vs. HC).
Fig. 4
Fig. 4. Top 10 features of classification models in adults.
A Top 10 features contribute to the classification of OCD from HC in adults. B Top 10 features contribute to the classification of unmedicated OCD from HC in adults. C Top 10 features contribute to the classification of medicated OCD from unmedicated OCD in adults. Note: The color legend represents DTI measures: red for FA, yellow for MD, green for AD, and blue for RD. Regions with multiple DTI measures are highlighted in purple.
Fig. 5
Fig. 5. Top 10 features of classification models in pediatrics.
A Top 10 features contribute to the classification of OCD from HC in pediatrics. B Top 10 features contribute to the classification of unmedicated OCD from HC in pediatrics. C Top 10 features contribute to the classification of medicated OCD from unmedicated OCD in pediatrics. Note: The color legend represents DTI measures: red for FA, yellow for MD, green for AD, and blue for RD. Regions with multiple DTI measures are highlighted in purple.

References

    1. Fawcett EJ, Power H, Fawcett JM. Women Are at Greater Risk of OCD Than Men. J Clin Psychiatry. 2020;81:19r13085. doi: 10.4088/JCP.19r13085. - DOI - PubMed
    1. Boedhoe PSW, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. Distinct Subcortical Volume Alterations in Pediatric and Adult OCD: A Worldwide Meta- and Mega-Analysis. Am J Psychiatry. 2017;174:60–69. doi: 10.1176/appi.ajp.2016.16020201. - DOI - PMC - PubMed
    1. de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchón JM, et al. Multicenter Voxel-Based Morphometry Mega-Analysis of Structural Brain Scans in Obsessive-Compulsive Disorder. Am J Psychiatry. 2014;171:340–9. doi: 10.1176/appi.ajp.2013.13040574. - DOI - PubMed
    1. Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Radua J, et al. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder. JAMA Psychiatry. 2016;73:815. doi: 10.1001/jamapsychiatry.2016.0700. - DOI - PubMed
    1. Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, et al. Obsessive–compulsive disorder. Nat Rev Dis Prim. 2019;5:52. doi: 10.1038/s41572-019-0102-3. - DOI - PMC - PubMed