Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 7;28(1):43.
doi: 10.1186/s13054-024-04827-0.

Albumin versus saline infusion for sepsis-related peripheral tissue hypoperfusion: a proof-of-concept prospective study

Affiliations

Albumin versus saline infusion for sepsis-related peripheral tissue hypoperfusion: a proof-of-concept prospective study

Paul Gabarre et al. Crit Care. .

Abstract

Background: Albumin has potential endothelial protective effects through antioxidant and anti-inflammatory properties. However, the effect of albumin on peripheral tissue perfusion in human sepsis remains poorly known.

Methods: Bi-centric prospective study included patients with sepsis with or without shock and prolonged CRT > 3 s despite initial resuscitation. Clinicians in charge of the patients were free to infuse either saline 500 mL or human serum albumin 20% 100 mL over 15 min. Global hemodynamic parameters as well as peripheral tissue perfusion were analyzed after 1 (H1) and 4 h (H4). The primary endpoint was CRT normalization (< 3 s) at H1.

Results: 62 patients were screened, and 50 patients (13 sepsis and 37 septic shock) were included, 21 in the saline group and 29 in the albumin group. SOFA score was 8 [5-11], and SAPS II was 53 [45-70]. Median age was 68 [60-76] years with a higher proportion of men (74%). The primary sources of infection were respiratory (54%) and abdominal (24%). At baseline, comorbidities, clinical and biological characteristics were similar between groups. At H1, CRT normalization (< 3 s) was more frequent in patients receiving albumin as compared to patients treated by saline (63 vs 29%, P = 0.02). The decrease in fingertip CRT was more important in the albumin group when compared to saline group (- 1.0 [- 0.3; - 1.5] vs - 0.2 [- 0.1; - 1.1] seconds, P = 0.04) as well as decrease in mottling score. At H4, beneficial effects of albumin on peripheral tissue perfusion were maintained and urinary output trended to be higher in the albumin group (1.1 [0.5-1.8] vs 0.7 [0.5-0.9] ml/kg/h, P = 0.08). Finally, arterial lactate level did not significantly change between H0 and H4 in the saline group but significantly decreased in the albumin group (P = 0.03).

Conclusion: In patients with resuscitated sepsis, albumin infusion might lead to greater improvement of tissue hypoperfusion compared to saline.

Clinicaltrials: gov Identifier: NCT05094856.

Keywords: Albumin; Capillary refill time; Mottling; Sepsis; Tissue perfusion.

PubMed Disclaimer

Conflict of interest statement

H. Ait-Oufella won the Albumin Awards Program (Albus) in 2020. B. Guidet obtained a research grant and personal fees (speaker and consultant) from Grifols.

Figures

Fig. 1
Fig. 1
Evaluation of peripheral tissue perfusion at H1. A Percentage of patients with abnormal fingertip CRT, defined as > 3 s at baseline and 1 h after saline (white bars) or Albumin (red bars) infusion. B Variations of fingertip CRT between H0 and H1 (in seconds). C Variations of mottling score between H0 and H1. A Fisher test; B, C Nonparametric Mann–Whitney test
Fig. 2
Fig. 2
Evaluation of peripheral tissue perfusion at H4. A Fingertip CRT at H4 in patients treated by saline (white) or albumin (red). B Knee CRT at H4 in patients treated by saline (white) or albumin (red). C Urinary output between H0 and H4 in patients treated by saline (white) or albumin (red). D arterial lactate levels in patients treated by saline (white) or albumin (red) at H0 and H4 AC nonparametric Mann–Whitney test and D paired Wilcoxon signed-rank test

Comment in

References

    1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–211. doi: 10.1016/S0140-6736(19)32989-7. - DOI - PMC - PubMed
    1. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202(3):361–370. doi: 10.1164/rccm.201910-1911TR. - DOI - PubMed
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104. doi: 10.1164/rccm.200109-016OC. - DOI - PubMed
    1. Hariri G, Joffre J, Leblanc G, Bonsey M, Lavillegrand JR, Urbina T, Guidet B, Maury E, Bakker J, Ait-Oufella H. Narrative review: clinical assessment of peripheral tissue perfusion in septic shock. Ann Intensive Care. 2019;9(1):37. doi: 10.1186/s13613-019-0511-1. - DOI - PMC - PubMed
    1. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–1421. doi: 10.1056/NEJMoa1305727. - DOI - PubMed

Associated data