Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Jan 23:2024.01.18.576261.
doi: 10.1101/2024.01.18.576261.

MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of post-lung transplant injury

MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of post-lung transplant injury

Victoria Leroy et al. bioRxiv. .

Update in

Abstract

Rationale: Patients with end stage lung diseases require lung transplantation (LTx) that can be impeded by ischemia-reperfusion injury (IRI) leading to subsequent chronic lung allograft dysfunction (CLAD) and inadequate outcomes.

Objectives: We examined the undefined role of MerTK (receptor Mer tyrosine kinase) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis (phagocytosis of apoptotic cells) to facilitate resolution of lung IRI.

Methods: Single-cell RNA sequencing of lung tissue and BAL from post-LTx patients was analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with Balb/c (WT), cebpb -/- (MDSC-deficient), Mertk -/- or MerTK-CR (cleavage resistant) mice. Lung function, IRI (inflammatory cytokine and myeloperoxidase expression, immunohistology for neutrophil infiltration), and flow cytometry of lung tissue for efferocytosis of apoptotic neutrophils were assessed in mice.

Measurements and main results: A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of CLAD patients compared to healthy subjects was observed. In the murine IRI model, significant increase in M-MDSCs, MerTK expression and efferocytosis was observed in WT mice during resolution phase that was absent in cebpb -/- Land Mertk -/- mice. Adoptive transfer of M-MDSCs in cebpb -/- mice significantly attenuated lung dysfunction, and inflammation leading to resolution of IRI. Additionally, in a preclinical murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner.

Conclusions: Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can significantly contribute to the resolution of post-LTx IRI.

PubMed Disclaimer

Publication types