Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 1;25(3):818-832.
doi: 10.1093/biostatistics/kxad037.

DP2LM: leveraging deep learning approach for estimation and hypothesis testing on mediation effects with high-dimensional mediators and complex confounders

Affiliations

DP2LM: leveraging deep learning approach for estimation and hypothesis testing on mediation effects with high-dimensional mediators and complex confounders

Shuoyang Wang et al. Biostatistics. .

Erratum in

  • Correction.
    [No authors listed] [No authors listed] Biostatistics. 2024 Dec 31;26(1):kxae029. doi: 10.1093/biostatistics/kxae029. Biostatistics. 2024. PMID: 39186534 Free PMC article. No abstract available.

Abstract

Traditional linear mediation analysis has inherent limitations when it comes to handling high-dimensional mediators. Particularly, accurately estimating and rigorously inferring mediation effects is challenging, primarily due to the intertwined nature of the mediator selection issue. Despite recent developments, the existing methods are inadequate for addressing the complex relationships introduced by confounders. To tackle these challenges, we propose a novel approach called DP2LM (Deep neural network-based Penalized Partially Linear Mediation). This approach incorporates deep neural network techniques to account for nonlinear effects in confounders and utilizes the penalized partially linear model to accommodate high dimensionality. Unlike most existing works that concentrate on mediator selection, our method prioritizes estimation and inference on mediation effects. Specifically, we develop test procedures for testing the direct and indirect mediation effects. Theoretical analysis shows that the tests maintain the Type-I error rate. In simulation studies, DP2LM demonstrates its superior performance as a modeling tool for complex data, outperforming existing approaches in a wide range of settings and providing reliable estimation and inference in scenarios involving a considerable number of mediators. Further, we apply DP2LM to investigate the mediation effect of DNA methylation on cortisol stress reactivity in individuals who experienced childhood trauma, uncovering new insights through a comprehensive analysis.

Keywords: deep neural networks; direct effects; high-dimensional mediators; hypothesis testing; indirect effects; intricate nonlinear confounders.

PubMed Disclaimer

LinkOut - more resources