Rapid Exciton Transport and Structural Defects in Individual Porphyrinic Metal Organic Framework Microcrystals
- PMID: 38330249
- PMCID: PMC10885150
- DOI: 10.1021/jacs.3c12275
Rapid Exciton Transport and Structural Defects in Individual Porphyrinic Metal Organic Framework Microcrystals
Abstract
To date, spectroscopic characterization of porphyrin-based metal organic frameworks (MOFs) has relied almost exclusively on ensemble techniques, which provide only structurally averaged insight into the functional properties of these promising photochemical platforms. This work employs time-resolved pump-probe microscopy to probe ultrafast dynamics in PCN-222 MOF single crystals. The simultaneous high spatial and temporal resolution of the technique enables the correlation of spectroscopic observables to both inter- and intracrystal structural heterogeneity. The pump-probe measurements show that significant differences in the excited state lifetime exist between individual PCN-222 crystals of an ensemble. On a single PCN-222 crystal, differences in excited state lifetime and photoluminescence quantum yield are found to correlate to microscale structural defects introduced at crystallization. Pump probe microscopy also enables the direct measurement of excited state transport. Imaging of exciton transport on individual MOF crystals reveals rapid, but subdiffusive exciton transport which slows on the 10s of ps time scale. Time-averaged exciton diffusion coefficients over the first 200 ps span a range of 0.27 to 1.0 cm2/s, indicating that excited states are rapidly transported through the porphyrin network of PCN-222 before being trapped. Together, these single-particle-resolved measurements provide important new insight into the role played by structural defects on the photochemical functionality of porphyrin-based MOFs.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




Similar articles
-
Light harvesting and energy transfer in a porphyrin-based metal organic framework.Faraday Discuss. 2019 Jul 11;216(0):174-190. doi: 10.1039/c8fd00194d. Faraday Discuss. 2019. PMID: 31017129
-
Long-Range Exciton Transport in Perovskite-Metal Organic Framework Solid Composites.J Phys Chem Lett. 2020 Nov 5;11(21):9045-9050. doi: 10.1021/acs.jpclett.0c02974. Epub 2020 Oct 12. J Phys Chem Lett. 2020. PMID: 33044078
-
Assembled Exciton Dynamics in Porphyrin Metal-Organic Framework Nanofilms.Nano Lett. 2021 Jan 27;21(2):1102-1107. doi: 10.1021/acs.nanolett.0c04492. Epub 2021 Jan 6. Nano Lett. 2021. PMID: 33404245
-
Interrogating Light-initiated Dynamics in Metal-Organic Frameworks with Time-resolved Spectroscopy.Chem Rev. 2022 Jan 12;122(1):132-166. doi: 10.1021/acs.chemrev.1c00528. Epub 2021 Oct 6. Chem Rev. 2022. PMID: 34613710 Review.
-
Strategies for induced defects in metal-organic frameworks for enhancing adsorption and catalytic performance.Dalton Trans. 2022 May 31;51(21):8133-8159. doi: 10.1039/d2dt01030e. Dalton Trans. 2022. PMID: 35551351 Review.
Cited by
-
Porphyrinic MOF-derived novel nanocomposite for gastric anticancer and Helicobacter pylori photoantibacterial effect assay.Sci Rep. 2025 Aug 23;15(1):31008. doi: 10.1038/s41598-025-15892-y. Sci Rep. 2025. PMID: 40849528 Free PMC article.
References
-
- Rowsell J. L. C.; Yaghi O. M. Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mat 2004, 73 (1–2), 3–14. 10.1016/j.micromeso.2004.03.034. - DOI
-
- Jiao L.; Seow J. Y. R.; Skinner W. S.; Wang Z. U.; Jiang H. L. Metal-organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43–68. 10.1016/j.mattod.2018.10.038. - DOI
-
- Kim D.; Liu X. F.; Lah M. S. Topology analysis of metal-organic frameworks based on metal-organic polyhedra as secondary or tertiary building units. Inorg. Chem. Front 2015, 2 (4), 336–360. 10.1039/C4QI00236A. - DOI
-
- Long J. R.; Yaghi O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1213–1214. 10.1039/b903811f. - DOI - PubMed
- Zhou H. C.; Long J. R.; Yaghi O. M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112 (2), 673–674. 10.1021/cr300014x. - DOI - PubMed
- O’Keeffe M.; Yaghi O. M. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets. Chem. Rev. 2012, 112 (2), 675–702. 10.1021/cr200205j. - DOI - PubMed
LinkOut - more resources
Full Text Sources