ER stress and lipid imbalance drive diabetic embryonic cardiomyopathy in an organoid model of human heart development
- PMID: 38335962
- PMCID: PMC10937107
- DOI: 10.1016/j.stemcr.2024.01.003
ER stress and lipid imbalance drive diabetic embryonic cardiomyopathy in an organoid model of human heart development
Abstract
Congenital heart defects are the most prevalent human birth defects, and their incidence is exacerbated by maternal health conditions, such as diabetes during the first trimester (pregestational diabetes). Our understanding of the pathology of these disorders is hindered by a lack of human models and the inaccessibility of embryonic tissue. Using an advanced human heart organoid system, we simulated embryonic heart development under pregestational diabetes-like conditions. These organoids developed pathophysiological features observed in mouse and human studies before, including ROS-mediated stress and cardiomyocyte hypertrophy. scRNA-seq revealed cardiac cell-type-specific dysfunction affecting epicardial and cardiomyocyte populations and alterations in the endoplasmic reticulum and very-long-chain fatty acid lipid metabolism. Imaging and lipidomics confirmed these findings and showed that dyslipidemia was linked to fatty acid desaturase 2 mRNA decay dependent on IRE1-RIDD signaling. Targeting IRE1 or restoring lipid levels partially reversed the effects of pregestational diabetes, offering potential preventive and therapeutic strategies in humans.
Keywords: congenital heart defects; heart development; heart organoid; omega-3 fatty acid; pluripotent stem cell; pregestational diabetes; very-long-chain fatty acid.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures





Update of
-
ER stress and lipid imbalance drive embryonic cardiomyopathy in a human heart organoid model of pregestational diabetes.bioRxiv [Preprint]. 2023 Jun 8:2023.06.07.544081. doi: 10.1101/2023.06.07.544081. bioRxiv. 2023. Update in: Stem Cell Reports. 2024 Mar 12;19(3):317-330. doi: 10.1016/j.stemcr.2024.01.003. PMID: 37333095 Free PMC article. Updated. Preprint.
Similar articles
-
ER stress and lipid imbalance drive embryonic cardiomyopathy in a human heart organoid model of pregestational diabetes.bioRxiv [Preprint]. 2023 Jun 8:2023.06.07.544081. doi: 10.1101/2023.06.07.544081. bioRxiv. 2023. Update in: Stem Cell Reports. 2024 Mar 12;19(3):317-330. doi: 10.1016/j.stemcr.2024.01.003. PMID: 37333095 Free PMC article. Updated. Preprint.
-
Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.Am J Obstet Gynecol. 2016 Sep;215(3):366.e1-366.e10. doi: 10.1016/j.ajog.2016.03.036. Epub 2016 Mar 31. Am J Obstet Gynecol. 2016. PMID: 27038779 Free PMC article.
-
Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy.Cardiovasc Diabetol. 2013 Nov 2;12:158. doi: 10.1186/1475-2840-12-158. Cardiovasc Diabetol. 2013. PMID: 24180212 Free PMC article.
-
Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells.Mol Metab. 2017 Jul 12;6(9):1024-1039. doi: 10.1016/j.molmet.2017.06.001. eCollection 2017 Sep. Mol Metab. 2017. PMID: 28951826 Free PMC article. Review.
-
Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling.Am J Obstet Gynecol. 2015 May;212(5):569-79. doi: 10.1016/j.ajog.2014.11.036. Epub 2014 Nov 27. Am J Obstet Gynecol. 2015. PMID: 25434839 Free PMC article. Review.
Cited by
-
Advances in cardiac organoid research: implications for cardiovascular disease treatment.Cardiovasc Diabetol. 2025 Jan 18;24(1):25. doi: 10.1186/s12933-025-02598-8. Cardiovasc Diabetol. 2025. PMID: 39827092 Free PMC article. Review.
-
Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies.Int J Mol Sci. 2023 Nov 13;24(22):16258. doi: 10.3390/ijms242216258. Int J Mol Sci. 2023. PMID: 38003449 Free PMC article. Review.
-
Methods for Generating Self-Organizing Human Patterned Heart Organoids Using Pluripotent Stem Cells.Methods Mol Biol. 2025;2951:125-138. doi: 10.1007/7651_2024_545. Methods Mol Biol. 2025. PMID: 38647861 Free PMC article.
-
Maturation of human induced pluripotent stem cell-derived cardiomyocytes promoted by Brachyury priming.Sci Rep. 2025 Apr 24;15(1):14399. doi: 10.1038/s41598-025-97676-y. Sci Rep. 2025. PMID: 40275010 Free PMC article.
-
A Human Engineered Heart Tissue-Derived Lipotoxic Diabetic Cardiomyopathy Model Revealed Early Benefits of Empagliflozin.Adv Sci (Weinh). 2025 Aug;12(30):e03173. doi: 10.1002/advs.202503173. Epub 2025 May 28. Adv Sci (Weinh). 2025. PMID: 40433797 Free PMC article.
References
-
- Ahuja P., Zhao P., Angelis E., Ruan H., Korge P., Olson A., Wang Y., Jin E.S., Jeffrey F.M., Portman M., Maclellan W.R. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J. Clin. Invest. 2010;120:1494–1505. - PMC - PubMed
-
- Asp M., Giacomello S., Larsson L., Wu C., Fürth D., Qian X., Wärdell E., Custodio J., Reimegård J., Salmén F., et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell. 2019;179:1647–1660.e19. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases