Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 25:653:123884.
doi: 10.1016/j.ijpharm.2024.123884. Epub 2024 Feb 9.

Towards safer and efficient formulations: Machine learning approaches to predict drug-excipient compatibility

Affiliations

Towards safer and efficient formulations: Machine learning approaches to predict drug-excipient compatibility

Nguyen Thu Hang et al. Int J Pharm. .

Abstract

Predicting drug-excipient compatibility is a critical aspect of pharmaceutical formulation design. In this study, we introduced an innovative approach that leverages machine learning techniques to improve the accuracy of drug-excipient compatibility predictions. Mol2vec and 2D molecular descriptors combined with the stacking technique were used to improve the performance of the model. This approach achieved a significant advancement in the predictive capacity as demonstrated by the accuracy, precision, recall, AUC, and MCC of 0.98, 0.87, 0.88, 0.93 and 0.86, respectively. Using the DE-INTERACT model as the benchmark, our stacking model could remarkably detect drug-excipient incompatibility in 10/12 tested cases, while DE-INTERACT managed to recognize only 3 out of 12 incompatibility cases in the validation experiments. To ensure user accessibility, the trained model was deployed to a user-friendly web platform (URL: https://decompatibility.streamlit.app/). This interactive interface accommodated inputs through various types, including names, PubChem CID, or SMILES strings. It promptly generated compatibility predictions alongside corresponding probability scores. However, the continual refinement of model performance is crucial before applying this model in practice.

Keywords: Drug-excipient interactions; Machine learning; Model stacking; Mol2vec; Pharmaceutical formulation design.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources