RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment
- PMID: 38347795
- DOI: 10.2174/0113892010291042240130171709
RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment
Abstract
It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.
Keywords: RNAi; SiRNA; aptamer; cancer therapeutics; m-RNA vaccine.; miRNA.
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.
Similar articles
-
RNA interference and cancer therapy.Pharm Res. 2011 Dec;28(12):2983-95. doi: 10.1007/s11095-011-0604-5. Epub 2011 Oct 19. Pharm Res. 2011. PMID: 22009588 Review.
-
RNA interference and its role in cancer therapy.Adv Pharm Bull. 2014 Dec;4(4):313-21. doi: 10.5681/apb.2014.046. Epub 2014 Aug 10. Adv Pharm Bull. 2014. PMID: 25436185 Free PMC article. Review.
-
RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise.Nucleic Acid Ther. 2019 Apr;29(2):61-66. doi: 10.1089/nat.2018.0762. Epub 2018 Dec 18. Nucleic Acid Ther. 2019. PMID: 30562145 Free PMC article.
-
In vivo application of RNA interference: from functional genomics to therapeutics.Adv Genet. 2005;54:117-42. doi: 10.1016/S0065-2660(05)54006-9. Adv Genet. 2005. PMID: 16096010 Free PMC article. Review.
-
Prospects of RNA interference therapy for cancer.Gene Ther. 2006 Mar;13(6):464-77. doi: 10.1038/sj.gt.3302694. Gene Ther. 2006. PMID: 16341059 Review.
Cited by
-
Applications of Surface Plasmon Resonance for Advanced Studies Involving Nucleic Acids.RNA Nanomed. 2024 Dec;1(1):44-60. doi: 10.59566/ISRNN.2024.0101044. RNA Nanomed. 2024. PMID: 40207094 Free PMC article.
-
Emerging Mechanisms and Biomarkers Associated with T-Cells and B-Cells in Autoimmune Disorders.Clin Rev Allergy Immunol. 2025 Feb 11;68(1):14. doi: 10.1007/s12016-025-09022-9. Clin Rev Allergy Immunol. 2025. PMID: 39932617 Review.
-
New insights for the development of efficient DNA vaccines.Microb Biotechnol. 2024 Nov;17(11):e70053. doi: 10.1111/1751-7915.70053. Microb Biotechnol. 2024. PMID: 39545748 Free PMC article. Review.
-
Natural compounds as regulators of miRNAs: exploring a new avenue for treating colorectal cancer.Funct Integr Genomics. 2025 Feb 21;25(1):42. doi: 10.1007/s10142-025-01547-8. Funct Integr Genomics. 2025. PMID: 39982533 Review.
-
mRNA vaccines and SiRNAs targeting cancer immunotherapy: challenges and opportunities.Discov Oncol. 2025 Jul 5;16(1):1265. doi: 10.1007/s12672-025-03070-5. Discov Oncol. 2025. PMID: 40615758 Free PMC article. Review.
References
-
- Birney E.; Stamatoyannopoulos J.A.; Dutta A.; Guigó R.; Gingeras T.R.; Margulies E.H.; Weng Z.; Snyder M.; Dermitzakis E.T.; Thurman R.E.; Kuehn M.S.; Taylor C.M.; Neph S.; Koch C.M.; Asthana S.; Malhotra A.; Adzhubei I.; Greenbaum J.A.; Andrews R.M.; Flicek P.; Boyle P.J.; Cao H.; Carter N.P.; Clelland G.K.; Davis S.; Day N.; Dhami P.; Dillon S.C.; Dorschner M.O.; Fiegler H.; Giresi P.G.; Goldy J.; Hawrylycz M.; Haydock A.; Humbert R.; James K.D.; Johnson B.E.; Johnson E.M.; Frum T.T.; Rosenzweig E.R.; Karnani N.; Lee K.; Lefebvre G.C.; Navas P.A.; Neri F.; Parker S.C.; Sabo P.J.; Sandstrom R.; Shafer A.; Vetrie D.; Weaver M.; Wilcox S.; Yu M.; Collins F.S.; Dekker J.; Lieb J.D.; Tullius T.D.; Crawford G.E.; Sunyaev S.; Noble W.S.; Dunham I.; Denoeud F.; Reymond A.; Kapranov P.; Rozowsky J.; Zheng D.; Castelo R.; Frankish A.; Harrow J.; Ghosh S.; Sandelin A.; Hofacker I.L.; Baertsch R.; Keefe D.; Dike S.; Cheng J.; Hirsch H.A.; Sekinger E.A.; Lagarde J.; Abril J.F.; Shahab A.; Flamm C.; Fried C.; Hackermüller J.; Hertel J.; Lindemeyer M.; Missal K.; Tanzer A.; Washietl S.; Korbel J.; Emanuelsson O.; Pedersen J.S.; Holroyd N.; Taylor R.; Swarbreck D.; Matthews N.; Dickson M.C.; Thomas D.J.; Weirauch M.T.; Gilbert J.; Drenkow J.; Bell I.; Zhao X.; Srinivasan K.G.; Sung W.K.; Ooi H.S.; Chiu K.P.; Foissac S.; Alioto T.; Brent M.; Pachter L.; Tress M.L.; Valencia A.; Choo S.W.; Choo C.Y.; Ucla C.; Manzano C.; Wyss C.; Cheung E.; Clark T.G.; Brown J.B.; Ganesh M.; Patel S.; Tammana H.; Chrast J.; Henrichsen C.N.; Kai C.; Kawai J.; Nagalakshmi U.; Wu J.; Lian Z.; Lian J.; Newburger P.; Zhang X.; Bickel P.; Mattick J.S.; Carninci P.; Hayashizaki Y.; Weissman S.; Hubbard T.; Myers R.M.; Rogers J.; Stadler P.F.; Lowe T.M.; Wei C.L.; Ruan Y.; Struhl K.; Gerstein M.; Antonarakis S.E.; Fu Y.; Green E.D.; Karaöz U.; Siepel A.; Taylor J.; Liefer L.A.; Wetterstrand K.A.; Good P.J.; Feingold E.A.; Guyer M.S.; Cooper G.M.; Asimenos G.; Dewey C.N.; Hou M.; Nikolaev S.; Montoya-Burgos J.I.; Löytynoja A.; Whelan S.; Pardi F.; Massingham T.; Huang H.; Zhang N.R.; Holmes I.; Mullikin J.C.; Ureta-Vidal A.; Paten B.; Seringhaus M.; Church D.; Rosenbloom K.; Kent W.J.; Stone E.A.; Batzoglou S.; Goldman N.; Hardison R.C.; Haussler D.; Miller W.; Sidow A.; Trinklein N.D.; Zhang Z.D.; Barrera L.; Stuart R.; King D.C.; Ameur A.; Enroth S.; Bieda M.C.; Kim J.; Bhinge A.A.; Jiang N.; Liu J.; Yao F.; Vega V.B.; Lee C.W.; Ng P.; Shahab A.; Yang A.; Moqtaderi Z.; Zhu Z.; Xu X.; Squazzo S.; Oberley M.J.; Inman D.; Singer M.A.; Richmond T.A.; Munn K.J.; Rada-Iglesias A.; Wallerman O.; Komorowski J.; Fowler J.C.; Couttet P.; Bruce A.W.; Dovey O.M.; Ellis P.D.; Langford C.F.; Nix D.A.; Euskirchen G.; Hartman S.; Urban A.E.; Kraus P.; Van Calcar S.; Heintzman N.; Kim T.H.; Wang K.; Qu C.; Hon G.; Luna R.; Glass C.K.; Rosenfeld M.G.; Aldred S.F.; Cooper S.J.; Halees A.; Lin J.M.; Shulha H.P.; Zhang X.; Xu M.; Haidar J.N.; Yu Y.; Ruan Y.; Iyer V.R.; Green R.D.; Wadelius C.; Farnham P.J.; Ren B.; Harte R.A.; Hinrichs A.S.; Trumbower H.; Clawson H.; Hillman-Jackson J.; Zweig A.S.; Smith K.; Thakkapallayil A.; Barber G.; Kuhn R.M.; Karolchik D.; Armengol L.; Bird C.P.; de Bakker P.I.; Kern A.D.; Lopez-Bigas N.; Martin J.D.; Stranger B.E.; Woodroffe A.; Davydov E.; Dimas A.; Eyras E.; Hallgrímsdóttir I.B.; Huppert J.; Zody M.C.; Abecasis G.R.; Estivill X.; Bouffard G.G.; Guan X.; Hansen N.F.; Idol J.R.; Maduro V.V.; Maskeri B.; McDowell J.C.; Park M.; Thomas P.J.; Young A.C.; Blakesley R.W.; Muzny D.M.; Sodergren E.; Wheeler D.A.; Worley K.C.; Jiang H.; Weinstock G.M.; Gibbs R.A.; Graves T.; Fulton R.; Mardis E.R.; Wilson R.K.; Clamp M.; Cuff J.; Gnerre S.; Jaffe D.B.; Chang J.L.; Lindblad-Toh K.; Lander E.S.; Koriabine M.; Nefedov M.; Osoegawa K.; Yoshinaga Y.; Zhu B.; de Jong P.J.; Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007,447(7146),799-816 - DOI - PubMed
-
- Carninci P.; Kasukawa T.; Katayama S.; Gough J.; Frith M.C.; Maeda N.; Oyama R.; Ravasi T.; Lenhard B.; Wells C.; Kodzius R.; Shimokawa K.; Bajic V.B.; Brenner S.E.; Batalov S.; Forrest A.R.R.; Zavolan M.; Davis M.J.; Wilming L.G.; Aidinis V.; Allen J.E.; Ambesi-Impiombato A.; Apweiler R.; Aturaliya R.N.; Bailey T.L.; Bansal M.; Baxter L.; Beisel K.W.; Bersano T.; Bono H.; Chalk A.M.; Chiu K.P.; Choudhary V.; Christoffels A.; Clutterbuck D.R.; Crowe M.L.; Dalla E.; Dalrymple B.P.; de Bono B.; Gatta G.D.; di Bernardo D.; Down T.; Engstrom P.; Fagiolini M.; Faulkner G.; Fletcher C.F.; Fukushima T.; Furuno M.; Futaki S.; Gariboldi M.; Georgii-Hemming P.; Gingeras T.R.; Gojobori T.; Green R.E.; Gustincich S.; Harbers M.; Hayashi Y.; Hensch T.K.; Hirokawa N.; Hill D.; Huminiecki L.; Iacono M.; Ikeo K.; Iwama A.; Ishikawa T.; Jakt M.; Kanapin A.; Katoh M.; Kawasawa Y.; Kelso J.; Kitamura H.; Kitano H.; Kollias G.; Krishnan S.P.T.; Kruger A.; Kummerfeld S.K.; Kurochkin I.V.; Lareau L.F.; Lazarevic D.; Lipovich L.; Liu J.; Liuni S.; McWilliam S.; Babu M.M.; Madera M.; Marchionni L.; Matsuda H.; Matsuzawa S.; Miki H.; Mignone F.; Miyake S.; Morris K.; Mottagui-Tabar S.; Mulder N.; Nakano N.; Nakauchi H.; Ng P.; Nilsson R.; Nishiguchi S.; Nishikawa S.; Nori F.; Ohara O.; Okazaki Y.; Orlando V.; Pang K.C.; Pavan W.J.; Pavesi G.; Pesole G.; Petrovsky N.; Piazza S.; Reed J.; Reid J.F.; Ring B.Z.; Ringwald M.; Rost B.; Ruan Y.; Salzberg S.L.; Sandelin A.; Schneider C.; Schönbach C.; Sekiguchi K.; Semple C.A.M.; Seno S.; Sessa L.; Sheng Y.; Shibata Y.; Shimada H.; Shimada K.; Silva D.; Sinclair B.; Sperling S.; Stupka E.; Sugiura K.; Sultana R.; Takenaka Y.; Taki K.; Tammoja K.; Tan S.L.; Tang S.; Taylor M.S.; Tegner J.; Teichmann S.A.; Ueda H.R.; van Nimwegen E.; Verardo R.; Wei C.L.; Yagi K.; Yamanishi H.; Zabarovsky E.; Zhu S.; Zimmer A.; Hide W.; Bult C.; Grimmond S.M.; Teasdale R.D.; Liu E.T.; Brusic V.; Quackenbush J.; Wahlestedt C.; Mattick J.S.; Hume D.A.; Kai C.; Sasaki D.; Tomaru Y.; Fukuda S.; Kanamori-Katayama M.; Suzuki M.; Aoki J.; Arakawa T.; Iida J.; Imamura K.; Itoh M.; Kato T.; Kawaji H.; Kawagashira N.; Kawashima T.; Kojima M.; Kondo S.; Konno H.; Nakano K.; Ninomiya N.; Nishio T.; Okada M.; Plessy C.; Shibata K.; Shiraki T.; Suzuki S.; Tagami M.; Waki K.; Watahiki A.; Okamura-Oho Y.; Suzuki H.; Kawai J.; Hayashizaki Y.; The transcriptional landscape of the mammalian genome. Science 2005,309(5740),1559-1563 - DOI - PubMed
-
- Carninci P.; Sandelin A.; Lenhard B.; Katayama S.; Shimokawa K.; Ponjavic J.; Semple C.A.M.; Taylor M.S.; Engström P.G.; Frith M.C.; Forrest A.R.R.; Alkema W.B.; Tan S.L.; Plessy C.; Kodzius R.; Ravasi T.; Kasukawa T.; Fukuda S.; Kanamori-Katayama M.; Kitazume Y.; Kawaji H.; Kai C.; Nakamura M.; Konno H.; Nakano K.; Mottagui-Tabar S.; Arner P.; Chesi A.; Gustincich S.; Persichetti F.; Suzuki H.; Grimmond S.M.; Wells C.A.; Orlando V.; Wahlestedt C.; Liu E.T.; Harbers M.; Kawai J.; Bajic V.B.; Hume D.A.; Hayashizaki Y.; Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006,38(6),626-635 - DOI - PubMed
-
- Cheng J.; Kapranov P.; Drenkow J.; Dike S.; Brubaker S.; Patel S.; Long J.; Stern D.; Tammana H.; Helt G.; Sementchenko V.; Piccolboni A.; Bekiranov S.; Bailey D.K.; Ganesh M.; Ghosh S.; Bell I.; Gerhard D.S.; Gingeras T.R.; Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 2005,308(5725),1149-1154 - DOI - PubMed
-
- Cloonan N.; Forrest A.R.R.; Kolle G.; Gardiner B.B.A.; Faulkner G.J.; Brown M.K.; Taylor D.F.; Steptoe A.L.; Wani S.; Bethel G.; Robertson A.J.; Perkins A.C.; Bruce S.J.; Lee C.C.; Ranade S.S.; Peckham H.E.; Manning J.M.; McKernan K.J.; Grimmond S.M.; Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008,5(7),613-619 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous