Mechanism for Electrostatically Generated Magnetoresistance in Chiral Systems without Spin-Dependent Transport
- PMID: 38353652
- PMCID: PMC10906072
- DOI: 10.1021/acsnano.3c12925
Mechanism for Electrostatically Generated Magnetoresistance in Chiral Systems without Spin-Dependent Transport
Abstract
Significant attention has been drawn to electronic transport in chiral materials coupled to ferromagnets in the chirality-induced spin selectivity (CISS) effect. A large magnetoresistance (MR) is usually observed, which is widely interpreted to originate from spin (dependent) transport. However, there are severe discrepancies between the experimental results and the theoretical interpretations, most notably the apparent failure of the Onsager reciprocity relations in the linear response regime. We provide an alternative mechanism for the two terminal MR in chiral systems coupled to a ferromagnet. For this, we point out that it was observed experimentally that the electrostatic contact potential of chiral materials on a ferromagnet depends on the magnetization direction and chirality. The mechanism that we provide causes the transport barrier to be modified by the magnetization direction, already in equilibrium, in the absence of a bias current. This strongly alters the charge transport through and over the barrier, not requiring spin transport. This provides a mechanism that allows the linear response resistance to be sensitive to the magnetization direction and also explains the failure of the Onsager reciprocity relations. We propose experimental configurations to confirm our alternative mechanism for MR.
Keywords: chiral system; chirality-induced spin selectivity; equilibrium electrostatic potential; linear response; magnetoresistance; spin transport; spin valve effect.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




Similar articles
-
Detecting Chirality in Two-Terminal Electronic Nanodevices.Nano Lett. 2020 Aug 12;20(8):6148-6154. doi: 10.1021/acs.nanolett.0c02417. Epub 2020 Jul 23. Nano Lett. 2020. PMID: 32672980 Free PMC article.
-
Magnetochiral charge pumping due to charge trapping and skin effect in chirality-induced spin selectivity.Nat Commun. 2025 Jan 2;16(1):37. doi: 10.1038/s41467-024-55433-1. Nat Commun. 2025. PMID: 39747062 Free PMC article.
-
Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites.Sci Adv. 2019 Dec 6;5(12):eaay0571. doi: 10.1126/sciadv.aay0571. eCollection 2019 Dec. Sci Adv. 2019. PMID: 31840072 Free PMC article.
-
Spin Polarization in Transport Studies of Chirality-Induced Spin Selectivity.ACS Nano. 2023 Oct 24;17(20):19502-19507. doi: 10.1021/acsnano.3c06133. Epub 2023 Oct 4. ACS Nano. 2023. PMID: 37793070 Review.
-
The Importance of Spin State in Chiral Supramolecular Electronics.Front Chem. 2021 Aug 4;9:722727. doi: 10.3389/fchem.2021.722727. eCollection 2021. Front Chem. 2021. PMID: 34422770 Free PMC article. Review.
Cited by
-
Controlling Amyloid Assembly Dynamics Using Spin Interfaces.ACS Nano. 2025 Aug 12;19(31):28326-28334. doi: 10.1021/acsnano.5c06285. Epub 2025 Jul 28. ACS Nano. 2025. PMID: 40717488 Free PMC article.
-
Measurement Platform to Probe the Mechanism of Chiral-Induced Spin Selectivity through Direction-Dependent Magnetic Conductive Atomic Force Microscopy.ACS Nano. 2025 May 13;19(18):17941-17949. doi: 10.1021/acsnano.5c04980. Epub 2025 Apr 29. ACS Nano. 2025. PMID: 40298194 Free PMC article.
-
The mechanism of the molecular CISS effect in chiral nano-junctions.Chem Sci. 2024 Aug 16;15(36):14905-12. doi: 10.1039/d4sc04435e. Online ahead of print. Chem Sci. 2024. PMID: 39246376 Free PMC article.
-
Substantial Magnetic Fields Arising from Ballistic Ring Currents in Single-Molecule Junctions.JACS Au. 2025 Jul 23;5(8):4073-4085. doi: 10.1021/jacsau.5c00735. eCollection 2025 Aug 25. JACS Au. 2025. PMID: 40881421 Free PMC article.
-
Observation of Two-Terminal CISS Magnetoresistance with Nonmagnetic Contacts.Nano Lett. 2025 Jun 18;25(24):9623-9630. doi: 10.1021/acs.nanolett.5c01297. Epub 2025 Jun 9. Nano Lett. 2025. PMID: 40489250 Free PMC article.
References
-
- Evers F.; Aharony A.; Bar-Gill N.; Entin-Wohlman O.; Hedegård P.; Hod O.; Jelinek P.; Kamieniarz G.; Lemeshko M.; Michaeli K.; Mujica V.; Naaman R.; Paltiel Y.; Refaely-Abramson S.; Tal O.; Thijssen J.; Thoss M.; van Ruitenbeek J. M.; Venkataraman L.; Waldeck D. H.; Yan B.; Kronik L. Theory of Chirality Induced Spin Selectivity: Progress and Challenges. Adv. Mater. 2022, 34, 2106629.10.1002/adma.202106629. - DOI - PubMed
-
- Aiello C. D.; Abendroth J. M.; Abbas M.; Afanasev A.; Agarwal S.; Banerjee A. S.; Beratan D. N.; Belling J. N.; Berche B.; Botana A.; Caram J. R.; Celardo G. L.; Cuniberti G.; Garcia-Etxarri A.; Dianat A.; Diez-Perez I.; Guo Y.; Gutierrez R.; Herrmann C.; Hihath J.; Kale S.; Kurian P.; Lai Y. C.; Liu T.; Lopez A.; Medina E.; Mujica V.; Naaman R.; Noormandipour M.; Palma J. L.; Paltiel Y.; Petuskey W.; Ribeiro-Silva J. C.; Saenz J. J.; Santos E. J.; Solyanik-Gorgone M.; Sorger V. J.; Stemer D. M.; Ugalde J. M.; Valdes-Curiel A.; Varela S.; Waldeck D. H.; Wasielewski M. R.; Weiss P. S.; Zacharias H.; Wang Q. H. A Chirality-Based Quantum Leap. ACS Nano 2022, 16, 4989.10.1021/acsnano.1c01347. - DOI - PMC - PubMed
-
- Yang S. H.; Naaman R.; Paltiel Y.; Parkin S. S. P. Chiral Spintronics, Nature Reviews. Physics 2021, 3, 328.10.1038/s42254-021-00302-9. - DOI
-
- Yan B.Structural chirality and electronic chirality in quantum materials. 2023;10.48550/arXiv.2312.03902 (accessed December 15, 2023). - DOI
Publication types
LinkOut - more resources
Full Text Sources