Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 12;20(5):2202-2208.
doi: 10.1021/acs.jctc.3c01230. Epub 2024 Feb 14.

Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers

Affiliations

Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers

Maximilian Graml et al. J Chem Theory Comput. .

Abstract

The GW method is widely used for calculating the electronic band structure of materials. The high computational cost of GW algorithms prohibits their application to many systems of interest. We present a periodic, low-scaling, and highly efficient GW algorithm that benefits from the locality of the Gaussian basis and the polarizability. The algorithm enables G0W0 calculations on a MoSe2/WS2 bilayer with 984 atoms per unit cell, in 42 h using 1536 cores. This is 4 orders of magnitude faster than a plane-wave G0W0 algorithm, allowing for unprecedented computational studies of electronic excitations at the nanoscale.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
G0W0 band gap of monolayer WS2, MoS2, WSe2, and MoSe2 calculated from eq 23 as a function of the supercell size (TZVP-MOLOPT basis set, without spin–orbit coupling (SOC)).
Figure 2
Figure 2
Number of floating point operations (real double precision) needed for executing G0W0 algorithms. Green: low-scaling G0W0 algorithm from this work using a TZVP-MOLOPT basis set. Black: computing the irreducible polarizability χ in a plane-wave basis. Gray: inverting the dielectric matrix ϵ in a plane-wave basis. Underlying computational parameters are typical for monolayers MoS2, MoSe2, WS2, and WSe2; see the detailed raw data and discussion available in the SI.
Figure 3
Figure 3
Execution time of a G0W0 calculation for MoSe2 9 × 9–14 × 14 supercells (TZVP-MOLOPT basis set) on Supermuc-NG (Intel Skylake Xeon Platinum 8174). Magenta points show the computational cost to diagonalize the polarizability χ(k), which allows us to remove all spurious negative eigenvalues of χ(k) to ensure numerical stability. Dashed lines show a fit of αNatβ to the execution time, where α and β are fit parameters. Raw data are available in the SI.
Figure 4
Figure 4
Band gap of a MoSe2/WS2 heterostructure as a function of the twist angle. Inset: The unit cell (black rhomboid) for a 19.4° twist angle contains 984 atoms.

Similar articles

Cited by

References

    1. Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 13680510.1103/PhysRevLett.105.136805. - DOI - PubMed
    1. Seyler K. L.; Rivera P.; Yu H.; Wilson N. P.; Ray E. L.; Mandrus D. G.; Yan J.; Yao W.; Xu X. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70. 10.1038/s41586-019-0957-1. - DOI - PubMed
    1. Zhang L.; Zhang Z.; Wu F.; Wang D.; Gogna R.; Hou S.; Watanabe K.; Taniguchi T.; Kulkarni K.; Kuo T.; Forrest S. R.; Deng H. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.10.1038/s41467-020-19466-6. - DOI - PMC - PubMed
    1. Shabani S.; Halbertal D.; Wu W.; Chen M.; Liu S.; Hone J.; Yao W.; Basov D. N.; Zhu X.; Pasupathy A. N. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 2021, 17, 720–725. 10.1038/s41567-021-01174-7. - DOI
    1. Karni O.; et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 2022, 603, 247–252. 10.1038/s41586-021-04360-y. - DOI - PubMed

LinkOut - more resources