Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 25;59(6):759-775.e5.
doi: 10.1016/j.devcel.2024.01.014. Epub 2024 Feb 13.

LDO proteins and Vac8 form a vacuole-lipid droplet contact site to enable starvation-induced lipophagy in yeast

Affiliations

LDO proteins and Vac8 form a vacuole-lipid droplet contact site to enable starvation-induced lipophagy in yeast

Irene Álvarez-Guerra et al. Dev Cell. .

Abstract

Lipid droplets (LDs) are fat storage organelles critical for energy and lipid metabolism. Upon nutrient exhaustion, cells consume LDs via gradual lipolysis or via lipophagy, the en bloc uptake of LDs into the vacuole. Here, we show that LDs dock to the vacuolar membrane via a contact site that is required for lipophagy in yeast. The LD-localized LDO proteins carry an intrinsically disordered region that directly binds vacuolar Vac8 to form vCLIP, the vacuolar-LD contact site. Nutrient limitation drives vCLIP formation, and its inactivation blocks lipophagy, resulting in impaired caloric restriction-induced longevity. We establish a functional link between lipophagy and microautophagy of the nucleus, both requiring Vac8 to form respective contact sites upon metabolic stress. In sum, we identify the tethering machinery of vCLIP and find that Vac8 provides a platform for multiple and competing contact sites associated with autophagy.

Keywords: Ldo16; Ldo45; NVJ; lipid droplets; lipophagy; membrane contact sites; nucleus-vacuole junction; nutrient limitation; vCLIP; vacuole-lipid droplet contact site.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

Publication types

MeSH terms

Substances