Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr;628(8007):277-281.
doi: 10.1038/s41586-024-07191-9. Epub 2024 Feb 14.

A massive galaxy that formed its stars at z ≈ 11

Affiliations

A massive galaxy that formed its stars at z ≈ 11

Karl Glazebrook et al. Nature. 2024 Apr.

Abstract

The formation of galaxies by gradual hierarchical co-assembly of baryons and cold dark matter halos is a fundamental paradigm underpinning modern astrophysics1,2 and predicts a strong decline in the number of massive galaxies at early cosmic times3-5. Extremely massive quiescent galaxies (stellar masses of more than 1011 M) have now been observed as early as 1-2 billion years after the Big Bang6-13. These galaxies are extremely constraining on theoretical models, as they had formed 300-500 Myr earlier, and only some models can form massive galaxies this early12,14. Here we report on the spectroscopic observations with the JWST of a massive quiescent galaxy ZF-UDS-7329 at redshift 3.205 ± 0.005. It has eluded deep ground-based spectroscopy8, it is significantly redder than is typical and its spectrum reveals features typical of much older stellar populations. Detailed modelling shows that its stellar population formed around 1.5 billion years earlier in time (z ≈ 11) at an epoch when dark matter halos of sufficient hosting mass had not yet assembled in the standard scenario4,5. This observation may indicate the presence of undetected populations of early galaxies and the possibility of significant gaps in our understanding of early stellar populations, galaxy formation and the nature of dark matter.

PubMed Disclaimer

References

    1. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984). - DOI
    1. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Ann. Rev. Astron. Astrophys. 53, 51–113 (2015). - DOI
    1. Glazebrook, K. et al. A high abundance of massive galaxies 3–6 billion years after the Big Bang. Nature 430, 181–184 (2004). - PubMed - DOI
    1. Behroozi, P. & Silk, J. The most massive galaxies and black holes allowed by ΛCDM. Mon. Not. R. Astron. Soc. 477, 5382–5387 (2018). - DOI
    1. Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731–735 (2023). - PubMed - PMC - DOI

LinkOut - more resources