Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb:48:100623.
doi: 10.1016/j.sste.2023.100623. Epub 2023 Nov 18.

Examining associations between social vulnerability indices and COVID-19 incidence and mortality with spatial-temporal Bayesian modeling

Affiliations

Examining associations between social vulnerability indices and COVID-19 incidence and mortality with spatial-temporal Bayesian modeling

Daniel P Johnson et al. Spat Spatiotemporal Epidemiol. 2024 Feb.

Abstract

This study compares two social vulnerability indices, the U.S. CDC SVI and SoVI (the Social Vulnerability Index developed at the Hazards Vulnerability & Resilience Institute at the University of South Carolina), on their ability to predict the risk of COVID-19 cases and deaths. We utilize COVID-19 cases and deaths data for the state of Indiana from the Regenstrief Institute in Indianapolis, Indiana, from March 1, 2020, to March 31, 2021. We then aggregate the COVID-19 data to the census tract level, obtain the input variables, domains (components), and composite measures of both CDC SVI and SoVI data to create a Bayesian spatial-temporal ecological regression model. We compare the resulting spatial-temporal patterns and relative risk (RR) of SARS-CoV-2 infection (COVID-19 cases) and associated death. Results show there are discernable spatial-temporal patterns for SARS-CoV-2 infections and deaths with the largest contiguous hotspot for SARS-CoV-2 infections found in the southwest of the Indianapolis metropolitan area. We also observed one large contiguous hotspot for deaths that stretches across Indiana from the Cincinnati area in the southeast to just east and north of Terre Haute (southeast to west central). The spatial-temporal Bayesian model shows that a 1-percentile increase in CDC SVI was significantly (p ≤ 0.05) associated with an increased risk of SARS-CoV-2 infection by 6 % (RR = 1.06, 95 %CI = 1.04 -1.08). Whereas a 1-percentile increase in SoVI was significantly predicted to increase the risk of COVID-19 death by 45 % (RR = 1.45, 95 %CI =1.38 - 1.53). Domain-specific variables related to socioeconomic status, age, and race/ethnicity were shown to increase the risk of SARS-CoV-2 infections and deaths. There were notable differences in the relative risk estimates for SARS-CoV-2 infections and deaths when each of the two indices were incorporated in the model. Observed differences between the two social vulnerability indices and infection and death are likely due to alternative methodologies of formation and differences in input variables. The findings add to the growing literature on the relationship between social vulnerability and COVID-19 and further the development of COVID-19-specific vulnerability indices by illustrating the utility of local spatial-temporal analysis.

Keywords: Bayesian spatiotemporal modeling; CDC SVI; COVID-19 outcomes; Disease mapping; SoVI; Social vulnerability; Spatial epidemiology; Spatial-temporal trend analysis.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources