Development of a Cr2AlC MAX phase/g-C3N4 composite-based electrochemical sensor for accurate cabotegravir determination in pharmaceutical and biological samples
- PMID: 38355771
- DOI: 10.1007/s00604-024-06207-5
Development of a Cr2AlC MAX phase/g-C3N4 composite-based electrochemical sensor for accurate cabotegravir determination in pharmaceutical and biological samples
Abstract
A highly sensitive electrochemical sensor is reported that employs a modified electrode for the precise measurement of cabotegravir, a potent anti-HIV drug. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were utilized for this purpose. Electrode modification involved the immobilization of Cr2AlC MAX phase/g-C3N4 onto a glassy carbon electrode (GCE) to enhance its electrocatalytic activity and selectivity for cabotegravir detection. Under the optimal experimental conditions, the working potential (vs. Ag/AgCl) was to 0.93 V. The developed sensor exhibited a good linear relationship in the range 0.05 µM to 9.34 µM with a low limit of detection of 4.33 nM, signifying its exceptional sensitivity. Additionally, it demonstrated successful cabotegravir detection in pharmaceutical formulations and biological samples, achieving an RSD below 3.0%. The recoveries fell within the range 97.7 to 102%, confirming the sensor's potential for real-sample applications. This innovative electrochemical sensor represents a significant advancement, providing a simple, reliable, and sensitive tool for the accurate measurement of cabotegravir. Its potential applications include optimizing drug dosages, monitoring treatment responses, and supporting the development of cabotegravir-based pharmaceutical products, thereby contributing to advancements in HIV therapy and prevention strategies.
Keywords: Cabotegravir; Cr2AlC MAX phase; Differential pulse voltammetry; Electrochemical sensor; Modified glassy carbon electrode; Pharmaceutical products; g-C3N4.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Similar articles
-
Highly sensitive electrochemical determination of cariprazine using a novel Ti3C2@CoAl2O4 nanocomposite: application to pharmaceutical and biological sample analysis.Mikrochim Acta. 2025 Mar 24;192(4):248. doi: 10.1007/s00604-025-07104-1. Mikrochim Acta. 2025. PMID: 40126677 Free PMC article.
-
Synthesis of poly (L-cysteine)/g-C3N4 modified glassy carbon electrodes for electrochemical detection of methotrexate as a medicine for treatment of breast cancer in pharmaceutical fluid samples.Chemosphere. 2023 Aug;331:138769. doi: 10.1016/j.chemosphere.2023.138769. Epub 2023 Apr 24. Chemosphere. 2023. PMID: 37100252
-
Glassy carbon electrodes modified with graphitic carbon nitride nanosheets and CoNiO2 bimetallic oxide nanoparticles as electrochemical sensor for Sunitinib detection in human fluid matrices and pharmaceutical samples.Mikrochim Acta. 2024 Aug 9;191(9):527. doi: 10.1007/s00604-024-06605-9. Mikrochim Acta. 2024. PMID: 39120802
-
A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo2Ti2AlC3 MXene precursor-modified electrode.Chemosphere. 2025 Feb;370:144012. doi: 10.1016/j.chemosphere.2024.144012. Epub 2024 Dec 28. Chemosphere. 2025. PMID: 39716601
-
A Critical Review on the Identification of Pathogens by Employing Peptide-Based Electrochemical Biosensors.Crit Rev Anal Chem. 2024 Aug 20:1-14. doi: 10.1080/10408347.2024.2390551. Online ahead of print. Crit Rev Anal Chem. 2024. PMID: 39163555 Review.
Cited by
-
Superior Electrochemical Sensor Application of Co3O4/C Heterostructure in Rapid Analysis of Anticancer Drug Palbociclib in Pharmaceutical Formulations and Biological Fluids.Langmuir. 2024 Oct 8;40(40):21139-21151. doi: 10.1021/acs.langmuir.4c02551. Epub 2024 Sep 28. Langmuir. 2024. PMID: 39340460 Free PMC article.
-
An Ultrasensitive Electrochemical Sensor Using Banana Peel Activated Carbon/NiFe2O4/MnCoFe-LDH Nanocomposites for Anticancer Drug Determination.ACS Omega. 2024 Jun 12;9(25):27446-27457. doi: 10.1021/acsomega.4c02460. eCollection 2024 Jun 25. ACS Omega. 2024. PMID: 38947832 Free PMC article.
References
-
- Han Y, Mesplède T, Wainberg M (2015) Cabotegravir. HIV integrase inhibitor, anti-HIV agent. Drugs Future 40(11). https://doi.org/10.1358/dof.2015.040.11.2383040
-
- Taki E, Soleimani F, Asadi A et al (2022) Cabotegravir/Rilpivirine: the last FDA-approved drug to treat HIV. Expert Rev Anti Infect Ther 20:1135–1147. https://doi.org/10.1080/14787210.2022.2081153 - DOI - PubMed
-
- Prasanna A, Rani SS (2022) A Validated Stability Indicating RP-HPLC Method Development for Simultaneous estimation of Cabotegravir and Rilpivirine in Pharmaceutical Dosage form. World J Pharm Sci 22–29. https://doi.org/10.54037/WJPS.2022.101003
-
- Blair HA (2022) Cabotegravir extended-release injectable suspension: A review in HIV-1 pre-exposure prophylaxis. Drugs 82:1489–1498. https://doi.org/10.1007/s40265-022-01791-3 - DOI - PubMed
-
- Enggi CK, Isa HT, Wijaya S et al (2022) Validation of spectrophotometric method to quantify cabotegravir in simulated vaginal fluid and porcine vaginal tissue in ex vivo permeation and retention studies from thermosensitive and mucoadhesive gels. Spectrochim Acta Part A Mol Biomol Spectrosc 267:120600. https://doi.org/10.1016/j.saa.2021.120600 - DOI