Development of optic disc edema during 30 days of hypercapnic head-down tilt bed rest is associated with short sleep duration and blunted temperature amplitude
- PMID: 38357726
- PMCID: PMC11286268
- DOI: 10.1152/japplphysiol.00211.2023
Development of optic disc edema during 30 days of hypercapnic head-down tilt bed rest is associated with short sleep duration and blunted temperature amplitude
Abstract
Sleep and circadian temperature disturbances occur with spaceflight and may, in part, result from the chronically elevated carbon dioxide (CO2) levels on the international space station. Impaired sleep may contribute to decreased glymphatic clearance and, when combined with the chronic headward fluid shift during actual spaceflight or the spaceflight analog head-down tilt bed rest (HDTBR), may contribute to the development of optic disc edema. We determined if strict HDTBR combined with mildly elevated CO2 levels influenced sleep and core temperature and was associated with the development of optic disc edema. Healthy participants (5 females) aged 25-50 yr, underwent 30 days of strict 6° HDTBR with ambient Pco2 = 4 mmHg. Measures of sleep, 24-h core temperature, overnight transcutaneous CO2, and Frisén grade edema were made pre-HDTBR, on HDTBR days 4, 17, 28, and post-HDTBR days 4 and 10. During all HDTBR time points, sleep, core temperature, and overnight transcutaneous CO2 were not different than the pre-HDTBR measurements. However, independent of the HDTBR intervention, the odds ratios {mean [95% confidence interval (CI)]} for developing Frisén grade optic disc edema were statistically significant for each hour below the mean total sleep time (2.2 [1.1-4.4]) and stage 2 nonrapid eye movement (NREM) sleep (4.8 [1.3-18.6]), and above the mean for wake after sleep onset (3.6 [1.2-10.6]) and for each 0.1°C decrease in core temperature amplitude below the mean (4.0 [1.4-11.7]). These data suggest that optic disc edema occurring during HDTBR was more likely to occur in those with short sleep duration and/or blunted temperature amplitude.NEW & NOTEWORTHY We determined that sleep and 24-h core body temperature were unaltered by 30 days exposure to the spaceflight analog strict 6° head-down tilt bed rest (HDTBR) in a 0.5% CO2 environment. However, shorter sleep duration, greater wake after sleep onset, and lower core temperature amplitude present throughout the study were associated with the development of optic disc edema, a key finding of spaceflight-associated neuro-ocular syndrome.
Keywords: SANS; carbon dioxide; core temperature; sleep; spaceflight-associated neuro-ocular syndrome.
Conflict of interest statement
No conflicts of interest, financial or otherwise, are declared by the authors.
Figures
References
-
- Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, Wright KP Jr, Czeisler CA. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13: 904–912, 2014. doi: 10.1016/S1474-4422(14)70122-X. - DOI - PMC - PubMed
-
- Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281: R1647–R1664, 2001. doi: 10.1152/ajpregu.2001.281.5.R1647. - DOI - PubMed
-
- Mallis MM, DeRoshia CW. Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76, 6 Suppl: B94–B107, 2005. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
