Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr;44(4):915-929.
doi: 10.1161/ATVBAHA.123.320339. Epub 2024 Feb 15.

Microvascular Network Remodeling in the Ischemic Mouse Brain Defined by Light Sheet Microscopy

Affiliations

Microvascular Network Remodeling in the Ischemic Mouse Brain Defined by Light Sheet Microscopy

Nina Hagemann et al. Arterioscler Thromb Vasc Biol. 2024 Apr.

Abstract

Background: Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges.

Methods: Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling.

Results: Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug.

Conclusions: Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.

Keywords: angiogenesis; brain injuries; ischemic stroke; microvessels; sphingosine-1-phosphate analog.

PubMed Disclaimer

Conflict of interest statement

Disclosures None.

Publication types

Substances

LinkOut - more resources