Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan 8;15(7):2593-2600.
doi: 10.1039/d3sc05797f. eCollection 2024 Feb 14.

Enantioselective nickel-catalyzed Mizoroki-Heck cyclizations of amide electrophiles

Affiliations

Enantioselective nickel-catalyzed Mizoroki-Heck cyclizations of amide electrophiles

Ana S Bulger et al. Chem Sci. .

Abstract

Amide cross-couplings that rely on C-N bond activation by transition metal catalysts have emerged as valuable synthetic tools. Despite numerous discoveries in this field, no catalytic asymmetric variants have been disclosed to date. Herein, we demonstrate the first such transformation, which is the Mizoroki-Heck cyclization of amide substrates using asymmetric nickel catalysis. This proof-of-concept study provides an entryway to complex enantioenriched polycyclic scaffolds and advances the field of amide C-N bond activation chemistry.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Asymmetric metal-catalyzed reactions of acyl electrophiles and current limitations. (B) Current state-of-the-art of amide cross-coupling reactions.
Fig. 2
Fig. 2. Overview of the reaction design and proposed mechanism.
Fig. 3
Fig. 3. Survey of chiral NHC salts with in situ free-basing. aConditions: Ni(cod)2 (15 mol%), NHC Salt (30 mol%), NaOt-Bu (33 mol%), PhMe (0.5 M), 100 °C; 24 h in a sealed vial. bConditions: Ni(cod)2 (15 mol%), NHC Salt (30 mol%), NaOt-Bu (33 mol%), t-amyl alcohol (3.0 equiv.), PhMe (0.5 M), 60 °C; 24 h in a sealed vial. a,bYields determined by 1H NMR using hexamethylbenzene as an external standard. ND is defined as not determined.
Fig. 4
Fig. 4. Results using select chiral NHC ligand salts with amide 6. aYields determined by 1H NMR using hexamethylbenzene as an external standard.
Fig. 5
Fig. 5. Generation of free carbene 10.
Fig. 6
Fig. 6. Survey of alcohol and amine additives in the transformation. aConversions and yields determined by 1H NMR using hexamethylbenzene as an external standard. bMorpholine (1.0 equiv.).
Fig. 7
Fig. 7. Examples of methodology. Yields shown reflect the average of two isolation experiments.
Fig. 8
Fig. 8. Elaboration of (+)-9 to enantioenriched compounds. (i) N-Brosyl hydrazine (5.0 equiv.), acetyl chloride (10 equiv.), EtOH (0.07 M), 0 → 60 °C; 72 h, 47% yield. (ii) (a) Fe(acac)3 (40 mol%), PhSH (40 mol%), PhSiH3 (4.0 equiv.), EtOH (0.1 M), 23 °C, 25 h. (b) TBAF (25 equiv.), 16 h, 87% yield over two steps (c) urea hydrogen peroxide (43 equiv.), TFA (19 equiv.), BF3·OEt3 (73 equiv.), CH2Cl2 (0.1 M), 0 → 23 °C, 16 h, 60% yield, 1.8 : 1 rr. (iii) LiAlH4 (1.5 equiv.), Et2O (0.03 M), 0 → 23 °C, 0.5 h, quant. yield. (iv) PPh3 (1.5 equiv.), DBAD (1.5 equiv.), CH2Cl2 (0.07 M), 10 °C, 3 h, quant. yield. (v) PPh3MeBr (2.4 equiv.), n-BuLi (1.7 equiv.), THF (0.2 M), 23 °C, 2 h, 97% yield. (vi) 2-(Methoxy)benzohydroximinoyl chloride (2.0 equiv.), NEt3 (2.0 equiv.), MeCN (0.1 M), 23 °C, 25 h, 79% yield, 5.3 : 1 dr. (vii) BF3·OEt2 (3.0 equiv.), allylMgCl (15 equiv.), toluene (0.05 M), −78 °C, 2 h, 63% yield, 1.6 : 1 dr. (viii) m-CPBA (1.5 equiv.), NaHCO3 (3.0 equiv.), CH2Cl2 (0.07 M), 0 °C, 2 h, 83% yield, 2.2 : 1 dr.

Similar articles

Cited by

References

    1. Johansson Seechurn C. Kitching M. O. Colacot T. J. Snieckus V. Angew. Chem., Int. Ed. 2012;51:5062–5085. doi: 10.1002/anie.201107017. - DOI - PubMed
    2. Hassan J. Sevignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002;102:1359–1470. doi: 10.1021/cr000664r. - DOI - PubMed
    3. Jiang L. and Buchwald S. L., in Metal-Catalyzed Cross- Coupling Reactions, 2nd edn, ed. A. Meijere and F. Diederich, Wiley VCH, Weinheim, 2004, pp. 699−760
    4. Corbet J. P. Mignani G. Chem. Rev. 2006;106:2651–2710. doi: 10.1021/cr0505268. - DOI - PubMed
    5. Negishi E. Bull. Chem. Soc. Jpn. 2007;80:233–257. doi: 10.1246/bcsj.80.233. - DOI
    6. Shen H. C., in Application of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective, ed. M. L. Crawley and B. M. Trost, Wiley, Hoboken, 2012, pp. 25−96
    7. Campeau L. C. Hazari N. Organometallics. 2019;38:3–35. doi: 10.1021/acs.organomet.8b00720. - DOI - PMC - PubMed
    8. Suzuki A. Angew. Chem., Int. Ed. 2011;50:6722–6737. doi: 10.1002/anie.201101379. - DOI - PubMed
    9. Negishi E. Angew. Chem., Int. Ed. 2011;50:6738–6764. doi: 10.1002/anie.201101380. - DOI - PubMed
    1. For select reviews on C–O, C–N and C–F bond cleaving reactions, see:

    2. Boit T. B. Bulger A. S. Dander J. E. Garg N. K. ACS Catal. 2020;10:12109–12126. doi: 10.1021/acscatal.0c03334. - DOI - PMC - PubMed
    3. Zhang S. Q. Hong X. Acc. Chem. Res. 2021;54:2158–2171. doi: 10.1021/acs.accounts.1c00050. - DOI - PubMed
    4. Baviskar B. A. Ajmire P. V. Chumbhale D. S. Khan M. S. Kuchake V. G. Singupuram M. Laddha P. R. Sustainable Chem. Pharm. 2023;32:100953. doi: 10.1016/j.scp.2022.100953. - DOI
    5. Zeng X. Huang X. Adv. Anal. Chem. 2022;12:68–75. doi: 10.12677/AAC.2022.122010. - DOI
    6. Tian M. Liu M. Pure Appl. Chem. 2021;93:799–810. doi: 10.1515/pac-2021-0110. - DOI
    7. Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014;43:8081–8097. doi: 10.1039/C4CS00206G. - DOI - PubMed
    8. Tobisu M. Chatani N. Acc. Chem. Res. 2015;48:1717–1726. doi: 10.1021/acs.accounts.5b00051. - DOI - PubMed
    9. Liu F. Jiang H. J. Zhou Y. Shi Z. Chin. J. Chem. 2020;38:855–863. doi: 10.1002/cjoc.201900506. - DOI
    10. Zhou T. Szostak M. Catal. Sci. Technol. 2020;10:5702–5739. doi: 10.1039/D0CY01159B. - DOI - PMC - PubMed
    11. Qiu Z. Li C. J. Chem. Rev. 2020;120:10454–10515. doi: 10.1021/acs.chemrev.0c00088. - DOI - PubMed
    12. Ahrens T. Kohlmann J. Ahrens M. Braun T. Chem. Rev. 2015;115:931–972. doi: 10.1021/cr500257c. - DOI - PubMed
    13. Fu L. Chen Q. Nishihara Y. Chem. Rec. 2021;21:3394–3410. doi: 10.1002/tcr.202100053. - DOI - PubMed
    14. Becica J. Leitch D. C. Synlett. 2021;32:641–646. doi: 10.1055/a-1306-3228. - DOI
    1. For select reviews on acyl electrophiles see:

    2. Buchspies J. Szostak M. Catal. 2019;9:53.
    3. Takise R. Muto K. Yamaguchi J. Chem. Soc. Rev. 2017;46:5864–5888. doi: 10.1039/C7CS00182G. - DOI - PubMed
    4. Zhou T. Szostak M. Catal. Sci. Technol. 2020;10:5702–5739. doi: 10.1039/D0CY01159B. - DOI - PMC - PubMed
    5. Gooßen L. J. Rodríguez N. Gooßen K. Angew. Chem., Int. Ed. 2008;47:3100–3120. doi: 10.1002/anie.200704782. - DOI - PubMed
    6. Dander J. E. Garg N. K. ACS Catal. 2017;7:1413–1423. doi: 10.1021/acscatal.6b03277. - DOI - PMC - PubMed
    7. Li G. Ma S. Szostak M. Trends Chem. 2020;2:914–928. doi: 10.1016/j.trechm.2020.08.001. - DOI
    1. For this context, “conventional” is used to refer to cross-couplings employing a nucleophile and electrophile. For select studies on asymmetric transition-metal-catalyzed reactions using thioester electrophiles, see:

    2. Banchini F. Leroux B. Le Gall E. Presset M. Jackowski O. Chemla F. Perez-Luna A. Chem.–Eur. J. 2023:e202301084. doi: 10.1002/chem.202301084. - DOI - PubMed
    3. Oost R. Misale A. Maulide N. Angew. Chem., Int. Ed. 2016;55:4587–4590. doi: 10.1002/anie.201600597. - DOI - PubMed
    4. Liu M. Wang X. Guo Z. Li H. Huang W. Xu H. Dai H.-X. Org. Lett. 2021;23:6299–6304. doi: 10.1021/acs.orglett.1c02093. - DOI - PubMed
    1. For select studies on asymmetric transition-metal-catalyzed reductive or photochemical cross-coupling reactions using anhydride or acid chloride electrophiles, see:

    2. Cherney A. H. Kadunce N. T. Reisman S. E. J. Am. Chem. Soc. 2013;135:7442–7445. doi: 10.1021/ja402922w. - DOI - PubMed
    3. Ji H. Lin D. Tai L. Li X. Shi Y. Han Q. Chen L.-A. J. Am. Chem. Soc. 2022;144:23019–23029. doi: 10.1021/jacs.2c10072. - DOI - PubMed
    4. Gandolfo E. Tang X. Roy S. R. Melchiorre P. Angew. Chem. 2019;131:17010–17014. doi: 10.1002/ange.201910168. - DOI - PMC - PubMed