Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 May;67(5):798-810.
doi: 10.1007/s00125-024-06107-6. Epub 2024 Feb 16.

Continuous glucose monitoring in adults with type 2 diabetes: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Continuous glucose monitoring in adults with type 2 diabetes: a systematic review and meta-analysis

Milena Jancev et al. Diabetologia. 2024 May.

Abstract

Aims/hypothesis: Continuous glucose monitoring (CGM) is increasingly used in the treatment of type 2 diabetes, but the effects on glycaemic control are unclear. The aim of this systematic review and meta-analysis is to provide a comprehensive overview of the effect of CGM on glycaemic control in adults with type 2 diabetes.

Methods: We performed a systematic review using Embase, MEDLINE, Web of Science, Scopus and ClinicalTrials.gov from inception until 2 May 2023. We included RCTs investigating real-time CGM (rtCGM) or intermittently scanned CGM (isCGM) compared with self-monitoring of blood glucose (SMBG) in adults with type 2 diabetes. Studies with an intervention duration <6 weeks or investigating professional CGM, a combination of CGM and additional glucose-lowering treatment strategies or GlucoWatch were not eligible. Change in HbA1c and the CGM metrics time in range (TIR), time below range (TBR), time above range (TAR) and glycaemic variability were extracted. We evaluated the risk of bias using the Cochrane risk-of-bias tool version 2. Data were synthesised by performing a meta-analysis. We also explored the effects of CGM on severe hypoglycaemia and micro- and macrovascular complications.

Results: We found 12 RCTs comprising 1248 participants, with eight investigating rtCGM and four isCGM. Compared with SMBG, CGM use (rtCGM or isCGM) led to a mean difference (MD) in HbA1c of -3.43 mmol/mol (-0.31%; 95% CI -4.75, -2.11, p<0.00001, I2=15%; moderate certainty). This effect was comparable in studies that included individuals using insulin with or without oral agents (MD -3.27 mmol/mol [-0.30%]; 95% CI -6.22, -0.31, p=0.03, I2=55%), and individuals using oral agents only (MD -3.22 mmol/mol [-0.29%]; 95% CI -5.39, -1.05, p=0.004, I2=0%). Use of rtCGM showed a trend towards a larger effect (MD -3.95 mmol/mol [-0.36%]; 95% CI -5.46 to -2.44, p<0.00001, I2=0%) than use of isCGM (MD -1.79 mmol/mol [-0.16%]; 95% CI -5.28, 1.69, p=0.31, I2=64%). CGM was also associated with an increase in TIR (+6.36%; 95% CI +2.48, +10.24, p=0.001, I2=9%) and a decrease in TBR (-0.66%; 95% CI -1.21, -0.12, p=0.02, I2=45%), TAR (-5.86%; 95% CI -10.88, -0.84, p=0.02, I2=37%) and glycaemic variability (-1.47%; 95% CI -2.94, -0.01, p=0.05, I2=0%). Three studies reported one or more events of severe hypoglycaemia and macrovascular complications. In comparison with SMBG, CGM use led to a non-statistically significant difference in the incidence of severe hypoglycaemia (RR 0.66, 95% CI 0.15, 3.00, p=0.57, I2=0%) and macrovascular complications (RR 1.54, 95% CI 0.42, 5.72, p=0.52, I2=29%). No trials reported data on microvascular complications.

Conclusions/interpretation: CGM use compared with SMBG is associated with improvements in glycaemic control in adults with type 2 diabetes. However, all studies were open label. In addition, outcome data on incident severe hypoglycaemia and incident microvascular and macrovascular complications were scarce.

Registration: This systematic review was registered on PROSPERO (ID CRD42023418005).

Keywords: CGM; Continuous glucose monitoring; Glycaemic control; Meta-analysis; Systematic review; Type 2 Diabetes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Forest plot of pooled analysis of change in HbA1c (mmol/mol) in individuals with type 2 diabetes using rtCGM or isCGM compared with SMBG
Fig. 2
Fig. 2
Forest plot of pooled analysis of change in HbA1c (mmol/mol) in individuals with type 2 diabetes using rtCGM or isCGM compared with SMBG, stratified according to type of glucose-lowering therapy (insulin users, no insulin users or mixed population of insulin users and no insulin users)
Fig. 3
Fig. 3
Forest plot of pooled analysis of change in TIR (a) TBR (b) and TAR (c) in individuals with type 2 diabetes using rtCGM or isCGM compared with SMBG

Comment in

References

    1. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2022;65:1925–1966. doi: 10.1007/s00125-022-05787-2. - DOI - PMC - PubMed
    1. Czupryniak L, Barkai L, Bolgarska S, et al. Self-monitoring of blood glucose in diabetes: from evidence to clinical reality in Central and Eastern Europe - recommendations from the international Central-Eastern European expert group. Diabetes Technol Ther. 2014;16:460–475. doi: 10.1089/dia.2013.0302. - DOI - PMC - PubMed
    1. Edelman SV, Argento NB, Pettus J, Hirsch IB. Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care. 2018;41(11):2265–2274. doi: 10.2337/dc18-1150. - DOI - PubMed
    1. Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 2023;11(1):42–57. doi: 10.1016/S2213-8587(22)00319-9. - DOI - PubMed
    1. Jackson MA, Ahmann A, Shah VN. Type 2 diabetes and the use of real-time continuous glucose monitoring. Diabetes Technol Ther. 2021;23(S1):S27–S34. doi: 10.1089/dia.2021.0007. - DOI - PMC - PubMed