Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 1:250:118486.
doi: 10.1016/j.envres.2024.118486. Epub 2024 Feb 14.

Molten salt mediated single-step synthesis of reusable nanostructured CaTiO3 for the removal and recovery of Sr2+: A potential adsorbent for the contaminated water bodies

Affiliations

Molten salt mediated single-step synthesis of reusable nanostructured CaTiO3 for the removal and recovery of Sr2+: A potential adsorbent for the contaminated water bodies

Amit Chanchpara et al. Environ Res. .

Abstract

The facile synthesis approach for the adsorbent preparation and recyclability during decontamination of radioactive pollutants is a significant concern in water treatment. The objective of this study is to, synthesis via solid-state reaction of the nanostructured CaTiO3 for the removal and recovery of strontium (Sr2+) from the various water sources. The influence of the adsorption-dependent parameters including, initial concentration, adsorbent dose, pH, contact time and co-existing ions interference were investigated. The prepared adsorbent was characterized by different analytical techniques like FT-IR, SEM with EDAX, TEM, TGA-DTG, Powder XRD and BET surface analysis. The kinetic models were also used, and according to the kinetic models, a pseudo-second-order kinetic model (R2 = 0.999) was better fitted to the adsorption of Sr2+ ions onto CaTiO3 rather than pseudo-first-order kinetics, which could properly represent the observed adsorption of Sr2+. For the isotherm study, the results are best fitted to the Langmuir isotherm model (R2 = 0.98) with a maximum adsorption capacity of 102.04 mg/g. The common ions (Na+, Mg2+, Ca2+, and K+) and Sr2+ having a concentration of 1:2, 1:3, and 1:4, where 82.8, 79.5, and 68.2 % removal was achieved of Sr2+ in each respective matrix. In addition, the adsorption and corresponding recovery and removal for the different Sr2+spiked matrices in deionized water, tap water, well water, lake water, and seawater were investigated with 97, 65.6, 76.5, 73.9 and 17.8 % removal respectively. Also, the CaTiO3 showed excellent recyclability with minimal loss even after 5 consecutive recyclability cycles and >90% removal of strontium achieved. Hence, prepared nanostructured CaTiO3 could be considered a promising adsorbent for the removal and recovery of Sr2+ions from contaminated water bodies.

Keywords: Adsorption; Calcium titanate; Radioactive; Recovery; Recyclability; Strontium.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms