Drug Nanocrystals: A Delivery Channel for Antiviral Therapies
- PMID: 38366178
- DOI: 10.1208/s12249-024-02754-5
Drug Nanocrystals: A Delivery Channel for Antiviral Therapies
Abstract
Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.
Keywords: COVID-19; antiretroviral; antiviral; hepatitis B; nanocrystal.
© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.
References
-
- Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 1979;2020(369):712–7.
-
- Fowlkes AL, Nogareda F, Regan A, Loayza S, Mancio JM, Duca LM, et al. Interim Effectiveness Estimates of 2023 Southern Hemisphere Influenza Vaccines in Preventing Influenza-Associated Hospitalizations — REVELAC–i Network, March–July 2023. MMWR Morb Mortal Wkly Rep. 2023;72:1010–5.
-
- Vardanyan R, Hruby V. Antiviral Drugs. Synthesis of Best-Seller Drugs. Elsevier; 2016. p. 687–736.
-
- Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2021;11:748–87. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
