Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar:396:130446.
doi: 10.1016/j.biortech.2024.130446. Epub 2024 Feb 15.

Understanding the effect of heating rate on hydrothermal liquefaction: A comprehensive investigation from model compounds to a real food waste

Affiliations
Free article

Understanding the effect of heating rate on hydrothermal liquefaction: A comprehensive investigation from model compounds to a real food waste

Edoardo Tito et al. Bioresour Technol. 2024 Mar.
Free article

Abstract

Hydrothermal liquefaction (HTL) emerges as an efficient technology for converting food waste into biocrude. Among HTL parameters, the impact of heating rate is understudied. This study systematically explores its variation (5-115 K/min) on HTL performance using actual food waste and model compounds representing its constituents. Results revealed that an increase in heating rates significantly impacts HTL performances (+63 % biocrude and -34 % solid with food waste) with short residence times, as slower heating rates imply a longer overall time and a higher kinetic advancement of the reaction. Conversely, with longer residence times, the influence of heating rates becomes negligible, as kinetics during heating times are overshadowed by those at operating temperatures. A subtle effect of heating variation at extended residence time was observed only with carbohydrates. This research emphasizes the utility of a kinetic severity factor (KSF) as a valuable tool for simultaneously considering heating rates, operating times, and temperatures.

Keywords: Biocrude; Fast hydrothermal liquefaction; Food waste; Heating rate; Kinetic severity factor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources