Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Feb 9:2024.02.07.576204.
doi: 10.1101/2024.02.07.576204.

Systems Analysis of Immune Changes after B-cell Depletion in Autoimmune Multiple Sclerosis

Systems Analysis of Immune Changes after B-cell Depletion in Autoimmune Multiple Sclerosis

Jessica Wei et al. bioRxiv. .

Abstract

Multiple sclerosis (MS) is a complex genetically mediated autoimmune disease of the central nervous system where anti-CD20-mediated B cell depletion is remarkably effective in the treatment of early disease. While previous studies investigated the effect of B cell depletion on select immune cell subsets using flow cytometry-based methods, the therapeutic impact on patient immune landscape is unknown. In this study, we explored how a therapy-driven " in vivo perturbation " modulates the diverse immune landscape by measuring transcriptomic granularity with single-cell RNA sequencing (scRNAseq). We demonstrate that B cell depletion leads to cell type-specific changes in the abundance and function of CSF macrophages and peripheral blood monocytes. Specifically, a CSF-specific macrophage population with an anti-inflammatory transcriptomic signature and peripheral CD16 + monocytes increased in frequency post-B cell depletion. In addition, we observed increases in TNFα messenger RNA and protein in monocytes post-B cell depletion, consistent with the finding that anti-TNFα treatment exacerbates autoimmune activity in MS. In parallel, B cell depletion also induced changes in peripheral CD4 + T cell populations, including increases in the frequency of TIGIT + regulatory T cells and marked decreases in the frequency of myelin peptide loaded-tetramer binding CD4 + T cells. Collectively, this study provides an exhaustive transcriptomic map of immunological changes, revealing different mechanisms of action contributing to the high efficacy in B cell depletion treatment of MS.

PubMed Disclaimer

Publication types