Recent advances in spatially variable gene detection in spatial transcriptomics
- PMID: 38370977
- PMCID: PMC10869304
- DOI: 10.1016/j.csbj.2024.01.016
Recent advances in spatially variable gene detection in spatial transcriptomics
Abstract
With the emergence of advanced spatial transcriptomic technologies, there has been a surge in research papers dedicated to analyzing spatial transcriptomics data, resulting in significant contributions to our understanding of biology. The initial stage of downstream analysis of spatial transcriptomic data has centered on identifying spatially variable genes (SVGs) or genes expressed with specific spatial patterns across the tissue. SVG detection is an important task since many downstream analyses depend on these selected SVGs. Over the past few years, a plethora of new methods have been proposed for the detection of SVGs, accompanied by numerous innovative concepts and discussions. This article provides a selective review of methods and their practical implementations, offering valuable insights into the current literature in this field.
Keywords: Single cell RNA sequencing; Spatial transcriptomics; Spatially resolved transcriptomics; Spatially variable genes.
© 2024 The Authors.
Conflict of interest statement
The authors declare that we have no financial or personal relationships with other people or organizations that could inappropriately influence or bias my work. We do not have any conflicts of interest, and we have not received any financial support for this work that could create potential conflicts of interest.
Update of
-
A SELECTIVE REVIEW OF RECENT DEVELOPMENTS IN SPATIALLY VARIABLE GENE DETECTION FOR SPATIAL TRANSCRIPTOMICS.ArXiv [Preprint]. 2023 Nov 23:arXiv:2311.13801v1. ArXiv. 2023. Update in: Comput Struct Biotechnol J. 2024 Feb 02;23:883-891. doi: 10.1016/j.csbj.2024.01.016. PMID: 38045476 Free PMC article. Updated. Preprint.
Similar articles
-
SPACE: Spatially variable gene clustering adjusting for cell type effect for improved spatial domain detection.bioRxiv [Preprint]. 2024 Aug 25:2024.08.23.609477. doi: 10.1101/2024.08.23.609477. bioRxiv. 2024. PMID: 39229093 Free PMC article. Preprint.
-
A SELECTIVE REVIEW OF RECENT DEVELOPMENTS IN SPATIALLY VARIABLE GENE DETECTION FOR SPATIAL TRANSCRIPTOMICS.ArXiv [Preprint]. 2023 Nov 23:arXiv:2311.13801v1. ArXiv. 2023. Update in: Comput Struct Biotechnol J. 2024 Feb 02;23:883-891. doi: 10.1016/j.csbj.2024.01.016. PMID: 38045476 Free PMC article. Updated. Preprint.
-
Benchmarking computational methods for detecting spatial domains and domain-specific spatially variable genes from spatial transcriptomics data.Nucleic Acids Res. 2025 Apr 10;53(7):gkaf303. doi: 10.1093/nar/gkaf303. Nucleic Acids Res. 2025. PMID: 40240000 Free PMC article.
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
-
Spatially resolved transcriptomics: advances and applications.Blood Sci. 2022 Nov 4;5(1):1-14. doi: 10.1097/BS9.0000000000000141. eCollection 2023 Jan. Blood Sci. 2022. PMID: 36742187 Free PMC article. Review.
Cited by
-
Categorization of 34 computational methods to detect spatially variable genes from spatially resolved transcriptomics data.Nat Commun. 2025 Jan 29;16(1):1141. doi: 10.1038/s41467-025-56080-w. Nat Commun. 2025. PMID: 39880807 Free PMC article. Review.
-
Categorization of 33 computational methods to detect spatially variable genes from spatially resolved transcriptomics data.ArXiv [Preprint]. 2024 Oct 3:arXiv:2405.18779v4. ArXiv. 2024. Update in: Nat Commun. 2025 Jan 29;16(1):1141. doi: 10.1038/s41467-025-56080-w. PMID: 38855546 Free PMC article. Updated. Preprint.
-
SPACE: Spatially variable gene clustering adjusting for cell type effect for improved spatial domain detection.bioRxiv [Preprint]. 2024 Aug 25:2024.08.23.609477. doi: 10.1101/2024.08.23.609477. bioRxiv. 2024. PMID: 39229093 Free PMC article. Preprint.
-
Identifying spatially variable genes by projecting to morphologically relevant curves.bioRxiv [Preprint]. 2024 Nov 21:2024.11.21.624653. doi: 10.1101/2024.11.21.624653. bioRxiv. 2024. PMID: 39605709 Free PMC article. Preprint.
References
-
- Moran Patrick A.P. Notes on continuous stochastic phenomena. Biometrika. 1950;37(1/2):17–23. - PubMed
-
- Geary Robert C. The contiguity ratio and statistical mapping. Inc Stat. 1954;5(3):115–146.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous