Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec;157(6):717-37.
doi: 10.1007/BF01350070.

Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the 'snapping-evoking area' in the optic tectum

Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the 'snapping-evoking area' in the optic tectum

M Satou et al. J Comp Physiol A. 1985 Dec.

Abstract

As a step to clarifying the neural bases for the visually-guided prey-catching behavior in the toad, special attention was paid to the flipping movement of the tongue. Tongue-muscle-controlling motoneurons were identified antidromically, and their topographical distribution within the hypoglossal nucleus, the morphology, and the neuronal pathways from the optic tectum including the 'snapping-evoking area' (see below) to these motoneurons were investigated in paralyzed Japanese toads using intracellular recording techniques. The morphology of motoneurons innervating the tongue-protracting or retracting muscles (PMNs or RMNs respectively) was examined by means of intracellular-staining (using HRP/cobaltic lysine) and retrograde-labeling (using cobaltic lysine) methods. Both PMNs and RMNs showed an extensive spread of the branching trees of dendrites; 4 dendritic fields were distinguished: lateral/ventrolateral, dorsal/dorsolateral, medial, and in some motoneurons, contralateral dendritic fields, although there was a tendency for the dorsal/dorsolateral dendritic field to be less extensive in the PMNs than in the RMNs. The axons of both PMNs and RMNs arose from thick dendrites, ran in a ventral direction without any axon-collaterals branching off, and then entered the hypoglossal nerve. The PMNs and RMNs were distributed topographically within the hypoglossal nucleus; the RMNs were located rostrally within the nucleus, whereas the PMNs were located more caudally within it. In about 3/4 of the RMNs tested, depolarizing potentials [presumably the excitatory postsynaptic potentials (EPSPs)], on which action potentials were often superimposed, were evoked by electrical stimuli applied to the nerve branch innervating the tongue protractor. These EPSPs were temporally facilitated when the electrical stimuli were applied at short intervals (10 ms). Both PMNs and RMNs showed hyperpolarizing potentials (IPSPs) in response to single electrical stimuli of various intensities (10-200 microA) applied to the 'snapping-evoking area' (lateral/ventrolateral part of the optic tectum) on either side. These IPSPs were facilitated after repetitive electrical stimulations at short intervals (10 ms) and of weaker intensities (down to 10 microA); i.e., a temporal facilitation of the IPSPs was observed. On the other hand, large and long-lasting EPSPs which prevailed over the underlying IPSPs were evoked after repetitive electrical stimulations (a few pulses or more) at short intervals (10 ms) and of stronger intensities (generally 90 microA or more); thus, a temporal facilitation of the EPSPs was also observed.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurophysiol. 1983 Jul;50(1):89-101 - PubMed
    1. Brain Res. 1986 Feb 12;365(1):198-203 - PubMed
    1. Acta Biol Acad Sci Hung. 1969;20(2):171-83 - PubMed
    1. J Comp Neurol. 1977 May 15;173(2):219-30 - PubMed
    1. J Comp Neurol. 1983 Mar 20;215(1):108-20 - PubMed

Publication types

MeSH terms

LinkOut - more resources