Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar;627(8003):347-357.
doi: 10.1038/s41586-024-07019-6. Epub 2024 Feb 19.

Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

Ken Suzuki #  1   2   3 Konstantinos Hatzikotoulas #  4 Lorraine Southam #  5 Henry J Taylor #  6   7   8 Xianyong Yin #  9   10 Kim M Lorenz #  11   12   13 Ravi Mandla #  14   15 Alicia Huerta-Chagoya  14 Giorgio E M Melloni  16 Stavroula Kanoni  17 Nigel W Rayner  5 Ozvan Bocher  5 Ana Luiza Arruda  5   18   19 Kyuto Sonehara  3   20   21   22 Shinichi Namba  3 Simon S K Lee  23 Michael H Preuss  23 Lauren E Petty  24 Philip Schroeder  14   15 Brett Vanderwerff  10 Mart Kals  25 Fiona Bragg  26   27 Kuang Lin  26 Xiuqing Guo  28 Weihua Zhang  29   30 Jie Yao  28 Young Jin Kim  31 Mariaelisa Graff  32 Fumihiko Takeuchi  33 Jana Nano  34 Amel Lamri  35   36 Masahiro Nakatochi  37 Sanghoon Moon  31 Robert A Scott  38 James P Cook  39 Jung-Jin Lee  40 Ian Pan  41 Daniel Taliun  10 Esteban J Parra  42 Jin-Fang Chai  43 Lawrence F Bielak  44 Yasuharu Tabara  45 Yang Hai  28 Gudmar Thorleifsson  46 Niels Grarup  47 Tamar Sofer  48   49   50 Matthias Wuttke  51 Chloé Sarnowski  52 Christian Gieger  34   53   54 Darryl Nousome  55 Stella Trompet  56   57 Soo-Heon Kwak  58 Jirong Long  59 Meng Sun  60 Lin Tong  61 Wei-Min Chen  62 Suraj S Nongmaithem  63 Raymond Noordam  57 Victor J Y Lim  43 Claudia H T Tam  64   65 Yoonjung Yoonie Joo  66   67 Chien-Hsiun Chen  68 Laura M Raffield  69 Bram Peter Prins  70 Aude Nicolas  71 Lisa R Yanek  72 Guanjie Chen  73 Jennifer A Brody  74 Edmond Kabagambe  59   75 Ping An  76 Anny H Xiang  77 Hyeok Sun Choi  78 Brian E Cade  49   79 Jingyi Tan  28 K Alaine Broadaway  69 Alice Williamson  38   80 Zoha Kamali  81   82 Jinrui Cui  83 Manonanthini Thangam  84 Linda S Adair  85 Adebowale Adeyemo  73 Carlos A Aguilar-Salinas  86 Tarunveer S Ahluwalia  87   88 Sonia S Anand  35   36   89 Alain Bertoni  90 Jette Bork-Jensen  47 Ivan Brandslund  91   92 Thomas A Buchanan  93 Charles F Burant  94 Adam S Butterworth  7   8   95   96   97 Mickaël Canouil  98   99 Juliana C N Chan  64   65   100   101 Li-Ching Chang  68 Miao-Li Chee  102 Ji Chen  103   104 Shyh-Huei Chen  105 Yuan-Tsong Chen  68 Zhengming Chen  26   27 Lee-Ming Chuang  106   107 Mary Cushman  108 John Danesh  7   8   70   95   96   97 Swapan K Das  109 H Janaka de Silva  110 George Dedoussis  111 Latchezar Dimitrov  112 Ayo P Doumatey  73 Shufa Du  85   113 Qing Duan  69 Kai-Uwe Eckardt  114   115 Leslie S Emery  116 Daniel S Evans  117 Michele K Evans  118 Krista Fischer  25   119 James S Floyd  74 Ian Ford  120 Oscar H Franco  121 Timothy M Frayling  122 Barry I Freedman  123 Pauline Genter  124 Hertzel C Gerstein  35   36   89 Vilmantas Giedraitis  125 Clicerio González-Villalpando  126 Maria Elena González-Villalpando  126 Penny Gordon-Larsen  85   113 Myron Gross  127 Lindsay A Guare  128 Sophie Hackinger  70 Liisa Hakaste  129   130 Sohee Han  31 Andrew T Hattersley  131 Christian Herder  53   132   133 Momoko Horikoshi  134 Annie-Green Howard  113   135 Willa Hsueh  136 Mengna Huang  41   137 Wei Huang  138 Yi-Jen Hung  139   140 Mi Yeong Hwang  141 Chii-Min Hwu  142   143 Sahoko Ichihara  144 Mohammad Arfan Ikram  121 Martin Ingelsson  125 Md Tariqul Islam  145 Masato Isono  33 Hye-Mi Jang  141 Farzana Jasmine  61 Guozhi Jiang  64   65 Jost B Jonas  146 Torben Jørgensen  147   148   149 Frederick K Kamanu  16 Fouad R Kandeel  150 Anuradhani Kasturiratne  151 Tomohiro Katsuya  152   153 Varinderpal Kaur  15 Takahisa Kawaguchi  45 Jacob M Keaton  6   59   112 Abel N Kho  154   155 Chiea-Chuen Khor  156 Muhammad G Kibriya  61 Duk-Hwan Kim  157 Florian Kronenberg  158 Johanna Kuusisto  159 Kristi Läll  25 Leslie A Lange  160 Kyung Min Lee  161   162 Myung-Shik Lee  163   164 Nanette R Lee  165 Aaron Leong  166   167 Liming Li  168   169 Yun Li  69 Ruifang Li-Gao  170 Symen Ligthart  121 Cecilia M Lindgren  171   172   173 Allan Linneberg  147   174 Ching-Ti Liu  175 Jianjun Liu  156   176 Adam E Locke  177   178   179 Tin Louie  116 Jian'an Luan  38 Andrea O Luk  64   65 Xi Luo  180 Jun Lv  168   169 Julie A Lynch  161   162 Valeriya Lyssenko  181   182 Shiro Maeda  134   183   184 Vasiliki Mamakou  185 Sohail Rafik Mansuri  63   186 Koichi Matsuda  187 Thomas Meitinger  188   189   190 Olle Melander  84 Andres Metspalu  25 Huan Mo  6 Andrew D Morris  191 Filipe A Moura  16 Jerry L Nadler  192 Michael A Nalls  71   193   194 Uma Nayak  62 Ioanna Ntalla  17 Yukinori Okada  3   20   21   22   195   196 Lorena Orozco  197 Sanjay R Patel  198 Snehal Patil  10 Pei Pei  169 Mark A Pereira  199 Annette Peters  34   53   190   200 Fraser J Pirie  201 Hannah G Polikowsky  24 Bianca Porneala  167 Gauri Prasad  202   203 Laura J Rasmussen-Torvik  67 Alexander P Reiner  204 Michael Roden  53   132   133 Rebecca Rohde  32 Katheryn Roll  28 Charumathi Sabanayagam  102   205   206 Kevin Sandow  28 Alagu Sankareswaran  63   186 Naveed Sattar  207 Sebastian Schönherr  158 Mohammad Shahriar  61 Botong Shen  118 Jinxiu Shi  138 Dong Mun Shin  141 Nobuhiro Shojima  2 Jennifer A Smith  44   208 Wing Yee So  64   101 Alena Stančáková  159 Valgerdur Steinthorsdottir  46 Adrienne M Stilp  116 Konstantin Strauch  209   210   211 Kent D Taylor  28 Barbara Thorand  34   53 Unnur Thorsteinsdottir  46   212 Brian Tomlinson  64   213 Tam C Tran  6 Fuu-Jen Tsai  214 Jaakko Tuomilehto  215   216   217   218 Teresa Tusie-Luna  219   220 Miriam S Udler  14   15   166 Adan Valladares-Salgado  221 Rob M van Dam  43   176 Jan B van Klinken  222   223   224 Rohit Varma  225 Niels Wacher-Rodarte  226 Eleanor Wheeler  38 Ananda R Wickremasinghe  151 Ko Willems van Dijk  222   223   227 Daniel R Witte  228   229 Chittaranjan S Yajnik  230 Ken Yamamoto  231 Kenichi Yamamoto  3   195   232 Kyungheon Yoon  141 Canqing Yu  168   169 Jian-Min Yuan  233   234 Salim Yusuf  35   36   89 Matthew Zawistowski  10 Liang Zhang  102 Wei Zheng  59 VA Million Veteran ProgramLeslie J Raffel  235 Michiya Igase  236 Eli Ipp  124 Susan Redline  49   79   237 Yoon Shin Cho  78 Lars Lind  238 Michael A Province  76 Myriam Fornage  239 Craig L Hanis  240 Erik Ingelsson  241   242 Alan B Zonderman  118 Bruce M Psaty  74   243   244 Ya-Xing Wang  245 Charles N Rotimi  73 Diane M Becker  72 Fumihiko Matsuda  45 Yongmei Liu  90   246 Mitsuhiro Yokota  247 Sharon L R Kardia  44 Patricia A Peyser  44 James S Pankow  199 James C Engert  248   249 Amélie Bonnefond  98   99   250 Philippe Froguel  98   99   250 James G Wilson  251 Wayne H H Sheu  140   143   252 Jer-Yuarn Wu  68 M Geoffrey Hayes  253   254   255 Ronald C W Ma  64   65   100   101 Tien-Yin Wong  102   205   206 Dennis O Mook-Kanamori  170 Tiinamaija Tuomi  84   129   130   256 Giriraj R Chandak  63   257 Francis S Collins  6 Dwaipayan Bharadwaj  258 Guillaume Paré  36   259 Michèle M Sale  62 Habibul Ahsan  61 Ayesha A Motala  201 Xiao-Ou Shu  59 Kyong-Soo Park  58   260 J Wouter Jukema  56   261 Miguel Cruz  221 Yii-Der Ida Chen  28 Stephen S Rich  262 Roberta McKean-Cowdin  55 Harald Grallert  34   53   263 Ching-Yu Cheng  102   205   206 Mohsen Ghanbari  121 E-Shyong Tai  43   176   264 Josee Dupuis  175   265 Norihiro Kato  33 Markku Laakso  159 Anna Köttgen  51 Woon-Puay Koh  266   267 Donald W Bowden  112   268   269 Colin N A Palmer  270 Jaspal S Kooner  30   271   272   273 Charles Kooperberg  204 Simin Liu  41   137   274 Kari E North  32 Danish Saleheen  275   276   277 Torben Hansen  47 Oluf Pedersen  47 Nicholas J Wareham  38 Juyoung Lee  141 Bong-Jo Kim  141 Iona Y Millwood  26   27 Robin G Walters  26   27 Kari Stefansson  46   212 Emma Ahlqvist  84 Mark O Goodarzi  83 Karen L Mohlke  69 Claudia Langenberg  38   278   279 Christopher A Haiman  280 Ruth J F Loos  23   47   281 Jose C Florez  14   15   166 Daniel J Rader  13   282   283   284 Marylyn D Ritchie  13   285   286 Sebastian Zöllner  10   287 Reedik Mägi  25 Nicholas A Marston  16 Christian T Ruff  16 David A van Heel  288 Sarah Finer  289 Joshua C Denny  6   290 Toshimasa Yamauchi  2 Takashi Kadowaki  2   291 John C Chambers  29   30   271   292 Maggie C Y Ng  112   269   293 Xueling Sim  43 Jennifer E Below  24 Philip S Tsao  241   294   295 Kyong-Mi Chang  11   296 Mark I McCarthy  171   297   298   299 James B Meigs  14   166   167 Anubha Mahajan  171   297   299 Cassandra N Spracklen  300 Josep M Mercader  14   15   79 Michael Boehnke  10 Jerome I Rotter  28 Marijana Vujkovic  11   296   301 Benjamin F Voight  302   303   304   305 Andrew P Morris  306   307   308 Eleftheria Zeggini  309   310
Collaborators, Affiliations

Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

Ken Suzuki et al. Nature. 2024 Mar.

Abstract

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.

PubMed Disclaimer

Conflict of interest statement

R.A.S. is now an employee of GlaxoSmithKline. G.T. is an employee of deCODE Genetics (Amgen). A.S.B. reports institutional grants from AstraZeneca, Bayer, Biogen, BioMarin, Bioverativ, Novartis, Regeneron and Sanofi. J. Danesh serves on scientific advisory boards for AstraZeneca, Novartis and UK Biobank, and has received multiple grants from academic, charitable and industry sources outside of the submitted work. L.S.E. is now an employee of Bristol Myers Squibb. J.S.F. has consulted for Shionogi. T.M.F. has consulted for Sanofi and Boehringer Ingelheim, and has received funding from GlaxoSmithKline. H.C.G. holds the McMaster-Sanofi Population Health Institute Chair in Diabetes Research and Care; reports research grants from Eli Lilly, AstraZeneca, Merck, Novo Nordisk and Sanofi; reports honoraria for speaking from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, DKSH, Zuellig, Roche and Sanofi; and reports consulting fees from Abbott, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck, Novo Nordisk, Pfizer, Sanofi, Kowa and Hanmi. M. Ingelsson is a paid consultant to BioArctic AB. R.L.-G. is a part-time consultant for Metabolon. A.E.L. is now an employee of Regeneron Genetics Center and holds shares in Regeneron Pharmaceuticals. M.A.N. currently serves on the scientific advisory board for Clover Therapeutics and is an advisor to Neuron23. S.R.P. has received grant funding from Bayer Pharmaceuticals, Philips Respironics and Respicardia. N. Sattar has consulted for or been on the speaker bureau for Abbott, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Hanmi, Novartis, Novo Nordisk, Sanofi and Pfizer, and has received grant funding from AstraZeneca, Boehringer Ingelheim, Novartis and Roche Diagnostics. V.S. is now an employee of deCODE Genetics/Amgen Inc. A.M.S. receives funding from Seven Bridges Genomics to develop tools for the NHLBI BioData Catalyst consortium. U.T. is an employee of deCODE Genetics (Amgen). E. Ingelsson is now an employee of GlaxoSmithKline. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. R.C.W.M. reports research funding from AstraZeneca, Bayer, Novo Nordisk, Pfizer, Tricida and Sanofi, and has consulted for or received speaker’s fees from AstraZeneca, Bayer and Boehringer Ingelheim, all of which have been donated to the Chinese University of Hong Kong to support diabetes research. D.O.M.-K. is a part-time clinical research consultant for Metabolon. S. Liu reports consulting payments and honoraria or promises of the same for scientific presentations or reviews at numerous venues, including but not limited to Barilla, By-Health, Ausa Pharmed., Fred Hutchinson Cancer Center, Harvard University, University of Buffalo, Guangdong General Hospital and Academy of Medical Sciences; is a consulting member for Novo Nordisk; is a member of the Data Safety and Monitoring Board for a trial of pulmonary hypertension in patients with diabetes at Massachusetts General Hospital; receives royalties from UpToDate; and receives an honorarium from the American Society for Nutrition for his duties as Associate Editor. K. Stefansson is an employee of deCODE Genetics (Amgen). M.I.M. has served on advisory panels for Pfizer, Novo Nordisk and Zoe Global; has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly; has received research funding from Abbvie, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda; and is now an employee of Genentech and a holder of Roche stock. J.B.M. is an Academic Associate for Quest Diagnostics R&D. A. Mahajan is an employee of Genentech, and a holder of Roche stock. The TIMI Study Group received institutional research grants through Brigham and Women’s Hospital supported by: Abbott, Abiomed, Inc., Amgen, Anthos Therapeutics, ARCA Biopharma, Inc., AstraZeneca, Boehringer Ingelheim, Daiichi-Sankyo, Ionis Pharmaceuticals, Inc., Janssen Research and Development, LLC, Medimmune, Merck, Novartis, Pfizer, Regeneron Pharmaceuticals, Inc., Roche, Saghmos Therapeutics, Inc., Siemens Healthcare Diagnostics, Inc. Softcell Medical Limited, The Medicines Company, Verve Therapeutics, Inc, and Zora Biosciences. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Heat map of associations of 37 cardiometabolic phenotypes with 8 mechanistic clusters of index SNVs for T2D association signals.
Each column corresponds to a cluster. Each row corresponds to a cardiometabolic phenotype. The ‘temperature’ of each cell represents the z-score (aligned to the T2D risk allele) of association of the phenotype with index SNVs assigned to the cluster. *Phenotype is adjusted for body mass index.
Fig. 2
Fig. 2. Heat map of cluster-specific enrichments of T2D associations for cell-type-specific regions of open chromatin derived from single-cell ATAC-seq peaks in adult and fetal tissue.
a, Cell types (222 types) from 30 human adult tissues and 15 human fetal tissues. b, Cell types (106 types) from the human brain. In each panel, columns represent mechanistic clusters. Each row represents a cell type that was significantly enriched (Bonferroni correction for the number of cell types) for T2D associations in at least one cluster (indicated by an asterisk). The ‘temperature’ of each cell defines the magnitude of the log fold enrichment. The liver and lipid metabolism cluster is not presented because it includes only three T2D association signals and the model parameter estimates were unstable.
Fig. 3
Fig. 3. Associations of cluster-specific components of the partitioned PS with five T2D-related vascular outcomes in up to 279,552 individuals from multiple ancestry groups.
Summaries of the associations of each cluster-specific component of the partitioned PS with CAD, ischaemic stroke (IS), peripheral artery disease (PAD), ESDN and proliferative diabetic retinopathy (PDR). The height of each bar corresponds to the log-odds ratio (beta) per standard deviation of the PS, and the grey bar shows the 95% confidence interval. Analyses of T2D-related macrovascular complications (CAD, PAD and IS) were undertaken in all individuals, with adjustment for T2D status. Analyses of microvascular complications were undertaken in individuals with T2D only. *P < 0.05, nominal association; **P < 0.0063, Bonferroni correction for eight clusters. Exact P values are provided in Supplementary Table 21.
Extended Data Fig. 1
Extended Data Fig. 1. Axes of genetic variation separating GWASs of T2D across ancestry groups.
We used SNVs that were reported in all studies to construct a distance matrix of mean effect allele frequency differences between each pair of GWASs. We implemented multi-dimensional scaling of the distance matrix to principal components that represent axes of genetic variation. The first three axes of genetic variation (PC1, PC2 and PC3) from multi-dimensional scaling of the Euclidean distance matrix between populations are sufficient to separate GWASs from six ancestry groups: African American (AFA), East Asian (EAS), European (EUR), Hispanic (HIS), South African (SAF), and South Asian (SAS). Variance explained by each axis: PC1 90.7%; PC2 6.5%; PC3 1.0%.
Extended Data Fig. 2
Extended Data Fig. 2. Cluster-specific associations of index SNVs with defining cardiometabolic phenotypes.
Each bar presents the −log10 P value for association, with effect direction aligned to the T2D risk allele. FG: fasting glucose. FI: fasting insulin. PI: proinsulin. BMI: body mass index. WHR: waist–hip ratio. LDL: low-density lipoprotein cholesterol. HDL: high-density lipoprotein cholesterol. TG: triglycerides. *Trait adjusted for BMI.
Extended Data Fig. 3
Extended Data Fig. 3. Cluster-specific associations of index SNVs with T2D.
The height of each bar corresponds to the log-odds ratio (beta), and the grey bar shows the 95% confidence interval. *P < 0.05, nominal association. **P < 0.0063, Bonferroni correction for eight clusters. Exact P values are presented in Supplementary Table 9.
Extended Data Fig. 4
Extended Data Fig. 4. Cluster-specific associations of T2D risk alleles at index SNVs with insulin-related endophenotypes.
Measures of insulin secretion and insulin sensitivity were derived from hyperinsulinaemic-euglycaemic clamp assessments and oral glucose tolerance tests in up to 1,316 Mexican American participants without diabetes. Homeostatic model assessment measures of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) were obtained from 36,466 non-diabetic individuals of European ancestry. Each point corresponds to the cluster-specific mean z-score for each trait, and grey bars represent 95% confidence intervals. The liver and lipid metabolism cluster has been removed for ease of presentation.
Extended Data Fig. 5
Extended Data Fig. 5. Cluster-specific associations of T2D risk alleles at index SNVs with insulin-resistance-related disorders.
Association with gestational diabetes mellitus (GDM) was assessed in 5,485 cases and 347,856 female controls of diverse ancestry. Association with polycystic ovary syndrome (PCOS) was assessed in 10,074 cases and 103,164 female controls of European ancestry. The height of each bar corresponds to the mean z-score, and the grey bar shows the 95% confidence interval. The liver and lipid metabolism cluster has been removed for ease of presentation. *P < 0.05, nominal association. **P < 0.0063, Bonferroni correction for eight clusters. Exact P values are presented in Supplementary Table 12.
Extended Data Fig. 6
Extended Data Fig. 6. Ancestry-correlated heterogeneity is driven by differences in allelic effect sizes between AFA, EAS and EUR ancestry groups.
In the scatter plot, index SNVs with significant evidence (PHET < 3.9 × 10−5, Bonferroni correction for 1,289 signals) for ancestry-correlated heterogeneity are plotted according to their association (z-score) with the first two axes of genetic variation. The first axis represents differences in allelic effect sizes between AFA/EUR GWASs and EAS GWASs (AFA–EAS axis), whilst the second axis represents differences in effect size between AFA/EAS GWASs and EUR GWASs (AFA–EUR axis). The forest plots present examples of ancestry-correlated heterogeneity at index SNVs. In each forest plot, the allelic log-odds ratio (OR) from each ancestry group-specific fixed-effects meta-analysis is given by the black tick mark, the 95% confidence interval is given by the horizontal line, and the weight (inverse-variance) of each ancestry group by the grey box. AFA: African American ancestry group. EAS: East Asian ancestry group. EUR: European ancestry group. HIS: Hispanic ancestry group. SAF: South African ancestry group. SAS: South Asian ancestry group.
Extended Data Fig. 7
Extended Data Fig. 7. Cluster-specific associations of index SNVs with the first two axes of genetic variation in T2D cases and controls.
a, Unadjusted for BMI. b, Adjusted for study-level mean BMI. Each point corresponds to a cluster, plotted according to the mean z-score for association with the first two axes of genetic variation (PC1 and PC2) on the x axis and y axis, respectively. Grey bars correspond to 95% confidence intervals. The liver and lipid metabolism cluster has been removed for ease of presentation.
Extended Data Fig. 8
Extended Data Fig. 8. Associations of cluster-specific components of the partitioned PS with CAD in up to 279,552 individuals across diverse ancestry groups.
The panel summarizes the associations of each cluster-specific component of the partitioned PS with CAD, with and without adjustment for a previously published multi-ancestry CAD PS. The height of each bar corresponds to the log-OR (beta) per standard deviation of the PS, and the grey bar shows the 95% confidence interval. Analyses were undertaken in all individuals, with adjustment for T2D status. *P < 0.05, nominal association. **P < 0.0063, Bonferroni correction for eight clusters. Exact P values are presented in Supplementary Tables 21 and 22.
Extended Data Fig. 9
Extended Data Fig. 9. Associations of cluster-specific components of the partitioned PS with T2D age of onset in up to 30,288 individuals across diverse ancestry groups.
The panel summarizes the associations of each cluster-specific component of the partitioned PS with age of onset. The height of each bar corresponds to years (beta) per standard deviation of the PS, and the grey bar shows the 95% confidence interval. A negative effect corresponds to earlier age of onset. *P < 0.05, nominal association. **P < 0.0063, Bonferroni correction for eight clusters. Exact P values are presented in Supplementary Table 23.
Extended Data Fig. 10
Extended Data Fig. 10. Associations of the beta cell +PI and obesity cluster-specific components of the partitioned PS with vascular outcomes in up to 29,827 EUR individuals with T2D from six clinical trials from the TIMI Study Group.
Major cardiovascular event is defined as myocardial infarction, ischaemic stroke, or cardiovascular death. Major limb event is defined as acute limb ischaemia or peripheral revascularization. The height of each bar corresponds to the log-hazard ratio per standard deviation of the PS, and the grey bar shows the 95% confidence interval. *P < 0.05, nominal association. **P < 0.0063, Bonferroni correction for eight clusters. Exact P values are presented in Supplementary Table 24.

References

    1. McCarthy MI. Painting a new picture of personalised medicine for diabetes. Diabetologia. 2017;60:793–799. doi: 10.1007/s00125-017-4210-x. - DOI - PMC - PubMed
    1. Pearson ER. Type 2 diabetes: a multifaceted disease. Diabetologia. 2019;62:1107–1112. doi: 10.1007/s00125-019-4909-y. - DOI - PMC - PubMed
    1. Mahajan A, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 2018;50:559–571. doi: 10.1038/s41588-018-0084-1. - DOI - PMC - PubMed
    1. Udler MS, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 2018;15:e1002654. doi: 10.1371/journal.pmed.1002654. - DOI - PMC - PubMed
    1. Udler MS, McCarthy MI, Florez JC, Mahajan A. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr. Rev. 2019;40:1500–1520. doi: 10.1210/er.2019-00088. - DOI - PMC - PubMed

MeSH terms