Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb;28(2):170-187.
doi: 10.1080/10255842.2023.2282951. Epub 2024 Feb 20.

Enhancing drug discovery in schizophrenia: a deep learning approach for accurate drug-target interaction prediction - DrugSchizoNet

Affiliations

Enhancing drug discovery in schizophrenia: a deep learning approach for accurate drug-target interaction prediction - DrugSchizoNet

Sherine Glory J et al. Comput Methods Biomech Biomed Engin. 2025 Feb.

Abstract

Drug discovery relies on the precise prognosis of drug-target interactions (DTI). Due to their ability to learn from raw data, deep learning (DL) methods have displayed outstanding performance over traditional approaches. However, challenges such as imbalanced data, noise, poor generalization, high cost, and time-consuming processes hinder progress in this field. To overcome the above challenges, we propose a DL-based model termed DrugSchizoNet for drug interaction (DI) prediction of Schizophrenia. Our model leverages drug-related data from the DrugBank and repoDB databases, employing three key preprocessing techniques. First, data cleaning eliminates duplicate or incomplete entries to ensure data integrity. Next, normalization is performed to enhance security and reduce costs associated with data acquisition. Finally, feature extraction is applied to improve the quality of input data. The three layers of the DrugSchizoNet model are the input, hidden and output layers. In the hidden layer, we employ dropout regularization to mitigate overfitting and improve generalization. The fully connected (FC) layer extracts relevant features, while the LSTM layer captures the sequential nature of DIs. In the output layer, our model provides confidence scores for potential DIs. To optimize the prediction accuracy, we utilize hyperparameter tuning through OB-MOA optimization. Experimental results demonstrate that DrugSchizoNet achieves a superior accuracy of 98.70%. The existing models, including CNN-RNN, DANN, CKA-MKL, DGAN, and CNN, across various evaluation metrics such as accuracy, recall, specificity, precision, F1 score, AUPR, and AUROC are compared with the proposed model. By effectively addressing the challenges of imbalanced data, noise, poor generalization, high cost and time-consuming processes, DrugSchizoNet offers a promising approach for accurate DTI prediction in Schizophrenia. Its superior performance demonstrates the potential of DL in advancing drug discovery and development processes.

Keywords: Drug–disease interaction; LSTM; deep learning; schizophrenia; side effects.

PubMed Disclaimer

LinkOut - more resources