Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 6;16(9):11627-11636.
doi: 10.1021/acsami.3c15201. Epub 2024 Feb 21.

Partial Ligand Stripping from CsPbBr3 Nanocrystals Improves Their Performance in Light-Emitting Diodes

Affiliations

Partial Ligand Stripping from CsPbBr3 Nanocrystals Improves Their Performance in Light-Emitting Diodes

Jinfei Dai et al. ACS Appl Mater Interfaces. .

Abstract

Halide perovskite nanocrystals (NCs), specifically CsPbBr3, have attracted considerable interest due to their remarkable optical properties for optoelectronic devices. To achieve high-efficiency light-emitting diodes (LEDs) based on CsPbBr3 nanocrystals (NCs), it is crucial to optimize both their photoluminescence quantum yield (PLQY) and carrier transport properties when they are deposited to form films on substrates. While the exchange of native ligands with didodecyl dimethylammonium bromide (DDAB) ligand pairs has been successful in boosting their PLQY, dense DDAB coverage on the surface of NCs should impede carrier transport and limit device efficiency. Following our previous work, here, we use oleyl phosphonic acid (OLPA) as a selective stripping agent to remove a fraction of DDAB from the NC surface and demonstrate that such stripping enhances carrier transport while maintaining a high PLQY. Through systematic optimization of OLPA dosage, we significantly improve the performance of CsPbBr3 LEDs, achieving a maximum external quantum efficiency (EQE) of 15.1% at 516 nm and a maximum brightness of 5931 cd m-2. These findings underscore the potential of controlled ligand stripping to enhance the performance of CsPbBr3 NC-based optoelectronic devices.

Keywords: CsPbBr3; carrier mobility; halide perovskites; light-emitting diodes; nanocrystal films; nanocrystals; surface ligands engineering.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a) Schematic description of the preparation of the reference CsPbBr3-DDAB NCs and their subsequent treatment with OLPA. (b) Ultraviolet–visible (UV–vis) absorption and steady-state PL spectra of the various CsPbBr3 NC suspensions/films (ref: reference sample, OLPA 0: sample washed with only ethyl acetate). (c) PLQY and average PL lifetime values of the NC suspensions (top) and films (bottom). (d) X-ray diffraction patterns of the films. (e) TEM images of the drop-cast suspensions (scale bars are 50 nm).
Figure 2
Figure 2
(a) Device structure of an LED based on CsPbBr3 NCs (left) and cross-sectional SEM image of the device (right). (b) Band-energy alignment of the adopted device structure. (c) Normalized EL spectra of the six devices when a 4.5 V bias was applied to them. The inset is a representative photograph of OLPA 2 device working at 4.5 V. (d) Current density and luminance versus driving voltage curve of the LEDs. (e) EQE versus current density of the same batch devices. (f) EQE statistics of a series sample.

Similar articles

Cited by

References

    1. Akkerman Q. A.; Abdelhady A. L.; Manna L. Zero-Dimensional Cesium Lead Halides: History, Properties, and Challenges. J. Phys. Chem. Lett. 2018, 9 (9), 2326–2337. 10.1021/acs.jpclett.8b00572. - DOI - PMC - PubMed
    1. Dey A.; Ye J. Z.; De A.; Debroye E.; Ha S. K.; Bladt E.; Kshirsagar A. S.; Wang Z. Y.; Yin J.; Wang Y.; Quan L. N.; Yan F.; Gao M. Y.; Li X. M.; Shamsi J.; Debnath T.; Cao M. H.; Scheel M. A.; Kumar S.; Steele J. A.; Gerhard M.; Chouhan L.; Xu K.; Wu X. G.; Li Y. X.; Zhang Y. N.; Dutta A.; Han C.; Vincon I.; Rogach A. L.; Nag A.; Samanta A.; Korgel B. A.; Shih C. J.; Gamelin D. R.; Son D. H.; Zeng H. B.; Zhong H. Z.; Sun H. D.; Demir H. V.; Scheblykin I. G.; Mora-Seró I.; Stolarczyk J. K.; Zhang J. Z.; Feldmann J.; Hofkens J.; Luther J. M.; Pérez-Prieto J.; Li L.; Manna L.; Bodnarchuk M. I.; Kovalenko M. V.; Roeffaers M. B. J.; Pradhan N.; Mohammed O. F.; Bakr O. M.; Yang P. D.; Müller-Buschbaum P.; Kamat P. V.; Bao Q. L.; Zhang Q.; Krahne R.; Galian R. E.; Stranks S. D.; Bals S.; Biju V.; Tisdale W. A.; Yan Y.; Hoye R. L. Z.; Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7), 10775–10981. 10.1021/acsnano.0c08903. - DOI - PMC - PubMed
    1. Shamsi J.; Dang Z. Y.; Ijaz P.; Abdelhady A. L.; Bertoni G.; Moreels I.; Manna L. Colloidal CsX (X = CI, Br, I) Nanocrystals and Their Transformation to CsPbX3 Nanocrystals by Cation Exchange. Chem. Mater. 2018, 30 (1), 79–83. 10.1021/acs.chemmater.7b04827. - DOI - PMC - PubMed
    1. Zhang J. J.; Wang L. X.; Jiang C. H.; Cheng B.; Chen T.; Yu J. G. CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells. Adv. Sci. 2021, 8 (21), 210264810.1002/advs.202102648. - DOI - PMC - PubMed
    1. Xing J.; Yan F.; Zhao Y. W.; Chen S.; Yu H. K.; Zhang Q.; Zeng R. G.; Demir H. V.; Sun X. W.; Huan A.; Xiong Q. H. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano 2016, 10 (7), 6623–6630. 10.1021/acsnano.6b01540. - DOI - PubMed

LinkOut - more resources