Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec 11;16(49):66911-66920.
doi: 10.1021/acsami.3c19100. Epub 2024 Feb 21.

Lithium-Ion-Sieve-Embedded Hybrid Membranes for Anion-Exchange- and Cation-Concentration-Driven Li/Mg Separation

Affiliations
Review

Lithium-Ion-Sieve-Embedded Hybrid Membranes for Anion-Exchange- and Cation-Concentration-Driven Li/Mg Separation

Guozhen Luo et al. ACS Appl Mater Interfaces. .

Abstract

There is an urgent need to develop efficient and environmentally friendly technologies for separating Li+ from brines containing abundant Mg2+ to meet the growing demand for lithium resources. In this work, we prepared hybrid membranes by integrating hydrogen manganese oxide (HMO), a lithium-ion sieve, as a filler into anion-exchange membranes (AEMs), the quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO) and poly(m-terphenyl piperidinium) (m-PTP). Cations are transported by electrostatic attraction originating from anions and the concentration difference across membranes. Because of the effects of electrostatic repulsion of the fixed cationic groups and steric resistance in AEMs, Li+ with less charge and smaller radius will preferentially pass through the membrane. In addition, the presence of HMO provides an additional fast transport channel for Li+, resulting in an enhanced Li+/Mg2+ separation performance. The results show that 20%HMO@m-PTP exhibits high Li+ flux (0.48 mol/m2·h) and Li+/Mg2+ selectivity (βLi+/Mg2+ = 14.1). Molecular dynamics simulations show that m-PTP has more free volume than QPPO, which is beneficial for rapid cation transport. Spectral analysis confirms the insertion and sieving of Li+ in HMO. This work illustrates the great potential of anion-exchange- and cation-concentration-driven hybrid membranes based on lithium-ion sieves for low-energy and efficient Li+ extraction processes.

Keywords: AEMs; Li/Mg separation; anion-exchange-driven; cation-concentration-driven; hybrid membrane; lithium-ion sieve.

PubMed Disclaimer

LinkOut - more resources