Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;626(8000):759-764.
doi: 10.1038/s41586-023-07010-7. Epub 2024 Feb 21.

Fractional quantum anomalous Hall effect in multilayer graphene

Affiliations

Fractional quantum anomalous Hall effect in multilayer graphene

Zhengguang Lu et al. Nature. 2024 Feb.

Abstract

The fractional quantum anomalous Hall effect (FQAHE), the analogue of the fractional quantum Hall effect1 at zero magnetic field, is predicted to exist in topological flat bands under spontaneous time-reversal-symmetry breaking2-6. The demonstration of FQAHE could lead to non-Abelian anyons that form the basis of topological quantum computation7-9. So far, FQAHE has been observed only in twisted MoTe2 at a moiré filling factor v > 1/2 (refs. 10-13). Graphene-based moiré superlattices are believed to host FQAHE with the potential advantage of superior material quality and higher electron mobility. Here we report the observation of integer and fractional QAH effects in a rhombohedral pentalayer graphene-hBN moiré superlattice. At zero magnetic field, we observed plateaus of quantized Hall resistance [Formula: see text] at v = 1, 2/3, 3/5, 4/7, 4/9, 3/7 and 2/5 of the moiré superlattice, respectively, accompanied by clear dips in the longitudinal resistance Rxx. Rxy equals [Formula: see text] at v = 1/2 and varies linearly with v, similar to the composite Fermi liquid in the half-filled lowest Landau level at high magnetic fields14-16. By tuning the gate-displacement field D and v, we observed phase transitions from composite Fermi liquid and FQAH states to other correlated electron states. Our system provides an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field7-9,17-19, especially considering a lateral junction between FQAHE and superconducting regions in the same device20-22.

PubMed Disclaimer

References

    1. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982). - DOI
    1. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011). - PubMed - DOI
    1. Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011). - PubMed - DOI
    1. Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).
    1. Sheng, D. N., Gu, Z. C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011). - PubMed - DOI

LinkOut - more resources