Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;626(8000):742-745.
doi: 10.1038/s41586-023-06979-5. Epub 2024 Feb 21.

A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst

Affiliations

A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst

Yu-Han Yang et al. Nature. 2024 Feb.

Abstract

Observationally, kilonovae are astrophysical transients powered by the radioactive decay of nuclei heavier than iron, thought to be synthesized in the merger of two compact objects1-4. Over the first few days, the kilonova evolution is dominated by a large number of radioactive isotopes contributing to the heating rate2,5. On timescales of weeks to months, its behaviour is predicted to differ depending on the ejecta composition and the merger remnant6-8. Previous work has shown that the kilonova associated with gamma-ray burst 230307A is similar to kilonova AT2017gfo (ref. 9), and mid-infrared spectra revealed an emission line at 2.15 micrometres that was attributed to tellurium. Here we report a multi-wavelength analysis, including publicly available James Webb Space Telescope data9 and our own Hubble Space Telescope data, for the same gamma-ray burst. We model its evolution up to two months after the burst and show that, at these late times, the recession of the photospheric radius and the rapidly decaying bolometric luminosity (Lbol ∝ t-2.7±0.4, where t is time) support the recombination of lanthanide-rich ejecta as they cool.

PubMed Disclaimer

References

    1. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989). - DOI
    1. Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998). - DOI
    1. Freiburghaus, C., Rosswog, S. & Thielemann, F. K. R-process in neutron star mergers. Astrophys. J. 525, L121–L124 (1999). - PubMed - DOI
    1. Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012). - DOI
    1. Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016). - DOI

LinkOut - more resources